

Полупромышленные и промышленные системы кондиционирования Бытовые системы кондиционирования Мультизональные системы СМУ Мультисистемы Фанкойлы Чиллеры

EEE 2015

CHIGO
CENTRAL AIR-CONDITIONING

КЛИМАТИЧЕСКИЕ || СИСТЕМЫ ||

www.chigo.su +7 (495) 204-30-01 8 (800) 775-42-13 E-mail: info@chigo.su

Содержание

Корпорация Chigo
Бытовые системы кондиционирования11
Передовые технологии12
Пульты управления16
Маркировка сплит-систем Chigo18
Инверторные настенные сплит-системы
DC-инвертор (CS-V-M114, CS-V-V147) 20
Настенные сплит-системы on/off (CS-H-M114,
CS-H-VC147, CS-H-M124, CS-H-B81)25
Напольные колонные кондиционеры (СF) 36
Бытовой осушитель воздуха (СВD)
Мультисистемы41
Маркировка мультизональных систем
Chigo43
DC-инверторные наружные блоки для муль-
тисистем (С2ОU, С3ОU)44
Внутренние блоки мультисистем (CSG) 47
Возможные комбинации внутренних
и наружных блоков48
Полупромышленные и промышленные
системы кондиционирования53
Маркировка полупромышленных систем
Chigo56
Универсальные наружные блоки полупро-
мышленной серии on/off (COU)57
Четырехпоточные кассетные внутренние
блоки (серия Compact) (CCB)62
Четырехпоточные кассетные внутренние
блоки (ССА)66
Напольно-подпотолочные внутренние
блоки (CUA)72
Низконапорные канальные внутренние
блоки (СТА)75
Средненапорные канальные внутренние
блоки (СТВ)78
Высоконапорные канальные внутренние
блоки (СТН)82
Универсальные наружные блоки полупро-
мышленной серии (DC-инвертор) (COU) 86
Четырехпоточные кассетные внутренние
блоки (DC-инвертор) (CCA)89
Напольно-подпотолочные внутрение блоки
(DC-инвертор) (CUA)
Низконапорные (СТА) и средненапорные
(СТВ) канальные внутренние блоки
(DC-инвертор)
Пульты дистанционного управления99
Универсальный наружный блок промышлен-
ной серии (СОТ)100
D
Внутренний блок напольного типа промыш-
Внутренний блок напольного типа промышленной серии (CFAi)
Внутренний блок напольного типа промышленной серии (CFAi)
Внутренний блок напольного типа промышленной серии (CFAi)
Внутренний блок напольного типа промышленной серии (CFAi)
Внутренний блок напольного типа промышленной серии (CFAi)

Мультизональные системы CMV	109
Маркировка оборудования Chigo VRF	111
CMV-mini Спецификация наружных блоков CMV-min	112 j
(CMV-V)	
CMV-II, CMV-X	118
Преимущества для пользователя	
Преимущества для монтажника	
Комплект для диагностики Doctor Kit	134
Наружные блоки CMV-II (CMV-V)	
Наружные блоки СМV-X (CMV-D)	
Типы внутренних блоков мультизональных	
CUCTEM	152
Однопоточные кассетные внутренние блог (CMV-V**Q1)	(И 150
Двухпоточные кассетные внутренние блок	I DO
двухноточные кассетные внутренние олок 	
Четырехпоточные кассетные внутренние	133
блоки (CMV-V**Q)	157
Четырехпоточные кассетные внутренние	
блоки (Compact type) (CMV-V**Q4)	162
Настенные внутренние блоки (CMV-V**G)	164
Напольно-подпотолочные внутренние	
блоки (CMV-V**LD)	167
Низконапорные канальные укороченные	
внутренние блоки (CMV-V**TA)	173
Низконапорные канальные внутренние	
блоки (CMV-V**TA)	175
Средненапорные канальные внутренние	
блоки (CMV-V**TB)	1//
Высоконапорные канальные внутренние	400
блоки (CMV-V**TH)	182
Высоконапорные канальные внутренние блоки со 100%-ной подачей свежего	
воздуха (CMV-V***TF)	188
Вентиляционные установки с рекуперацие	
тепла (QR)	
Системы управления и программное обес-	
печение	
Приложение 1. Последовательность подбора	
элементов трассы холодильного агента	
для систем CMV-mini	195
Приложение 2. Последовательность подбора	
элементов трассы холодильного агента для систем CMV-II	200
Приложение 3. Последовательность подбора	
элементов трассы холодильного агента	
для систем CMV-X	204
Чиллеры	209
Маркировка чиллеров Chigo	
Передовые технологии	
Проводной контроллер	216
Чиллеры (спецификация)	
Фанкойлы	223
Маркировка фанкойлов Chigo	224
Кассетные четырехпоточные фанкойлы	
(FP-Q)(FD-M)	
Фанкойлы канального типа (FP-W)	
Аксессуары	
Номоливатура иниматилоокой тохимии	222

Корпорация Chigo

Компания Chigo с главным офисом в городе Фошань, расположенном в округе Нанхай — ключевом индустриальном центре КНР, была основана в 1994 году.

Сегодня Chigo — это крупная современная компания, основным видом деятельности которой является разработка, проектирование, производство, а также продажа бытовой и коммерческой климатической

техники. Компания входит в число крупнейших мировых производителей оборудования для систем кондиционирования с годовым объемом производства в 10 млн комплектов. Chigo — производитель климатической техники с высокой промышленной интеграцией — это позволяет создавать максимально широкие продуктовые линейки, удовлетворяющие любым требованиям.

Завод по производству бытовых кондиционеров

Цех автоматического напыления

Научно-технический центр

Показатели ежегодного роста компании являются самыми высокими в отрасли, а продукция прошла строгую сертификацию во всех ключевых странах-импортерах.

Сбытовая сеть компании Chigo работает более чем в 180 регионах нашей планеты. Производитель постоянно контролирует и совершенствует производственный процесс. Качество продукции проверяется в уникальной лаборатории, оснащенной по

последнему слову техники оборудованием фирм SCHAFFNER EMC (Швейцария) и B&K (Дания).

Сhigo стремится к тому, чтобы стать лучшим выбором для потребителя. Компания вместе с мировым сообществом продолжает следовать принципам защиты окружающей среды и снижению выброса вредных веществ в атмосферу, чтобы улучшить качество жизни каждого человека.

Торговый офис

Оборудование для тестирования на старение

Лаборатория термодинамических испытаний

Лаборатория тестирования на вибрацию при транспортировке

Chigo Central Air-conditioning

Подразделение Chigo Central Air-conditioning было создано в 2002 году и входит в состав GUANGDONG Chigo Central Air-conditioning, LTD — профессионального производителя, осуществляющего разработку, производство, продажу, проектирование, монтаж и обслуживание оборудования центральных систем кондиционирования воздуха.

Результатом 11 лет развития стало то, что на сегодняшний день Chigo Central Airconditioning располагает производственными мощностями выпускающими около 600 000 кондиционеров в год с самой полной в КНР производственно-технологической цепочкой.

Стратегия производства «Всё-в-одном» позволяет удовлетворить самые различные потребности рынка и позволила СНІGО предлагать широкий диапазон оборудования для центральных систем кондиционирования воздуха в больших объемах.

Продукция Chigo Central Air-conditioning представлена в более чем 150 странах и регионах по всему миру, а сама компания имеет офисы в 31 провинции Китая. Высококвалифицированный инженерный состав Chigo Central Air-conditioning обеспечивает профессиональные технические решения и соответствующее обслуживание для своих клиентов.

На протяжении всей своей истории CHIGO отличается строгим следованием требованиям сертификационных органов основных мировых рынков, в том числе:

- IS09001 наличие на предприятии разработанной, внедренной и успешно работающей системы менеджмента качества;
- IS014000 наличие на предприятии разработанной, внедренной и успешно функционирующей системы экологического менеджмента (система управления охраной окружающей среды);
- обязательное Свидетельство для КНР (ССС);
- китайский сертификат о энергосберегающих продуктах;
- Сертификат об освобождении от Инспекции КНР по экспорту (единственный среди производителей кондиционеров в КНР);
- сертификаты РОСТЕСТ;
- сертификат США «UL»;
- сертификат ЕС «СЕ»;
- немецкий сертификат «GS;
- сертификат безопасности Австралии «SAA»;
- и многие другие...

CHIGO также завоевал награду ООН «Global Green» — за защиту окружающей среды и энергосберегающие технологии, применяемые в кондиционерах».

Вехи развития Chigo Central Air-conditioning

2014

2002

Chigo Air-conditioning начала работу в области коммерческих систем кондиционирования.

2004

Созд<mark>ан</mark>а компания Chigo Central Airconditioning.

2006

Chigo Central Air-conditioning получает награду «Известный бренд, производимый в провинции Гуандун».

2008

The Chigo Central Air-conditioning включена в почетный список «Десятка национальных брендов».

2009

Чиллер Chigo с воздушным охлаждением (тепловой насос) включен в Энергосберегающий каталог продукции «Национальное торговое достояние».

Chigo Central Air-conditioning получает признание как национальный HVAC-бренд 2009 года от «Десяти наиболее авторитетных дизайнеров Китая».

Chigo Central Air-conditioning в очередной раз получает награду «Известный бренд, производимый в провинции Гуандун».

Новые награды: «Наиболее узнаваемый бренд в провинции Гуандунг» и «За внедрение высоких технологий».

2013

Введен к эксплуатацию новый офис компании, открыты новые линии производства.

2012

Победа в тендере на поставку климатического обрудования в офисы класса A в Шанхае с бюджетом в \$10 млн.

Победа в тендере на оснащение объектов национальной железной дороги.

Участие в Пекинской выставке холодильного оборудования, где была представлена новая полностью DC-инверторная VRF-система.

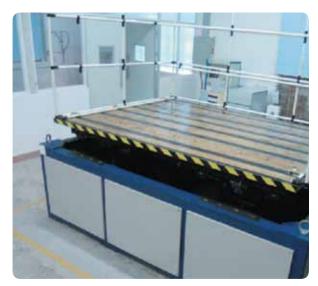
2011

Получены звания «Программа фундаментальных исследований», «Лучший рост в производстве кондиционеров» и присужден Класс «ААА» в сфере управления кредитными рисками.

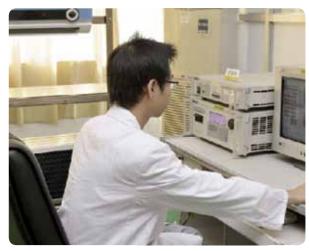
2010

Chigo (включая Chigo Central Air-conditioning) удостоена премии «Лучшая энергосберегающая продукция по итогам государственных заказов в области климатической техники 2009 года».

Chigo вошла в топ десять брендов — предприятий с низким выбросом углерода и энергосберегающими системами кондиционирования в одиннадцатой пятилетке.


Испытательный центр

Испытательный центр представляет собой комплексную, многофункциональную лабораторию, занимающую 6 тыс. квадратных метров и используется для изучения различных технических характеристик бытовых и коммерческих кондиционеров, их безопасности, надежности и подтверждения подлинности заявленных технических характеристик. Инвестиции в испытательный центр превысили 8 млн долларов основных средств.


Определение и подтверждение класса энергоэффективности Китайским Центром управления верификации.

Инженеры, получившие специальную профессиональную подготовку.

- 9 климатических камер;
- 3 лаборатории тестирования работы оборудования;
- 1 испытательная лаборатория по уровням шума;
- 2 лаборатории тестирования при долгосрочной эксплуатации;
- лаборатория анализа структуры безопасности;
- лаборатория расходов воздуха;
- лаборатория планирования;
- лаборатория электромагнитной совместимости;
- колориметрическая лаборатория;
- лаборатория для исследования работы при повышенной влажности и многое другое.

Профессионалы мирового уровня.

Долгосрочное сотрудничество с профессиональными организациями по сертификации и тестированию.

Системы анализа шума и вибрации Denmark B&K 3560.

Передовые технологии

Один ватт в режиме ожидания (опция)

В режиме ожидания система автоматически переходит в энергосберегающий режим. Это позволяет оборудованию потреблять всего 1 Вт электроэнергии вместо традиционных 4–5 Вт, обеспечивая экономию электроэнергии до 80%.

Функция «Турбо Комфорт»

Данная функция позволяет достаточно быстро охладить или обогреть помещение. Сочетание мощного современного компрессора и тщательно разработанной системы распределения воздуха дает возможность ощутить эффект охлаждения практически моментально после нажатия кнопки «Турбо».

Передовая технология очистки воздуха

Новейшая технология очистки воздуха позволяет удалять более 90% всех загрязнений (бактерии, дым, пыль и т.д.), находящихся в помещении объемом до 45 м³. Эта функция соответствует нормам для очистителей воздуха в КНР.

Входящий воздух \to входная сетка под высоким напряжением \to пыль и бактерии ионизируются \to пыль остается на фильтре, а бактерии уничтожаются.

Озонобезопасный хладагент R410A

Применение хладагента R410A в системах кондиционирования позволяет повысить их энергоэффективность. Кроме того, R410A не разрушает озоновый слой. Это позволяет снизить вредные выбросы в атмосферу и повысить экологичность системы.

Интеллектуальный ночной режим работы

В этом режиме кондиционер автоматически управляет температурой воздуха в помещении в соответствии с фазами сна человека. Достаточно нажать кнопку «SLEEP» — и сон будет максимально комфортным.

Интеллектуальный режим сна

Фаза медленного сна: кондиционер повышает температуру в помещении, чтобы создать наиболее комфортные условия для засыпающего человека, у которого понижается температура тела.

Фаза глубокого сна: кондиционер автоматически регулирует температуру в помещении, чтобы продлить время глубокого сна.

Фаза пробуждения: кондиционер понижает температуру воздуха в помещении до уровня, установленного пользователем, способствуя пробуждению человека.

Интеллектуальная очистка теплообменника

При активации режима очистки теплообменника внутренний блок переходит в режим охлаждения и переключает вентилятор на низкую скорость вращения. При этом обильно образующийся конденсат смывает пыль с поверхности теплообменника. Далее, оставаясь на низкой скорости вращения вентилятора, кондиционер переходит в режим нагрева, тем самым испаряя влагу с поверхности теплообменника. Затем кондиционер переходит в режим вентиляции, проводя окончательную осушку внутреннего блока. Данная функция позволяет предотвратить размножение бактерий внутри кондиционера и предотвратить появление неприятных запахов. Весь процесс очистки занимает 6 минут.

Через 6 минут

Защитное покрытие Golden Fin

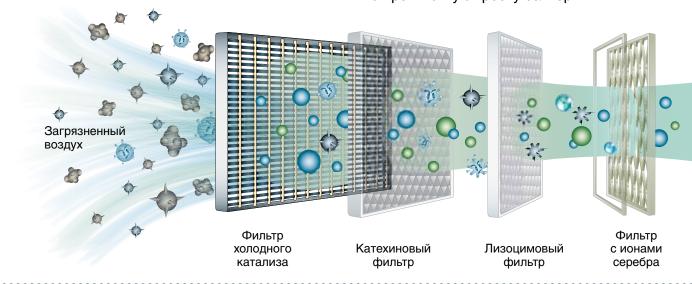
На ребра теплообменника наружного блока нанесено специальное антикоррозийное покрытие золотистого цвета. Данное покрытие эффективно защищает теплообменник от воздействия окружающей среды.

Воздушные фильтры

Фильтр «Холодного катализа»

Применение такой технологии позволяет эффективно удалять формальдегиды.

Катехиновый фильтр (опция)


Катехин — это вещество, обладающее бактерицидными свойствами, в больших количествах содержится в зеленом чае.

Лизоцимовый фильтр (опция)

Лизоцим подобно кахетину обладает бактерицидным действием, но также оказывает влияние и на другие группы вирусов и бактерий, т.е. этот фильтр совместно с катехиновым фильтром оказывает двойной антибактериальный эффект.

Фильтр с ионами серебра (опция)

Ионы серебра обладают сильными антибактериальными свойствами и эффективно препятствуют росту бактерий.

Здоровье

Система интеллектуальной чистки

Каталитический фильтр

Генератор анионов

Комфорт

Осушение

Функция Турбо

«Теплый» пуск в режиме нагрева

Энерго- сбережение

Теплообменник сложной конфигурации

Режим сна

DC-технологии

Простота управления

Легкая очистка панели

Экранный фильтр

24-часовой таймер

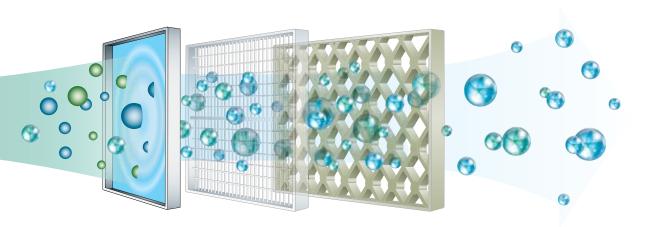
Надежность

Компрессор известного производителя

Родительский контроль

Высококачественная медная труба

Генератор анионов


Анионы положительно влияют на иммунитет и способствуют снятию стресса.

Фотокаталитический фильтр (опция)

Устраняет бактерии и неприятные запахи, регенерируется под действием дневного света.

Фильтр с витамином С (опция)

Витамин С благотворно влияет на здоровье кожи, укрепляет иммунитет и способствует снятию стресса.

Генератор анионов

Фотокаталитический фильтр

Фильтр с витамином С

Фильтр с витамином С

Фильтр с ионами серебра

Подача наружного воздуха Здоровье

Технология трехмерного распределения воздуха

Подсветка дисплея

Скрытый дисплей

Комфорт

Антикоррозионная защита Golden Fin

Электронный расширительный клапан

Потребление электроэнергии в режиме ожидания 1 Вт

Энергосбережение

Функции внутренней защиты и самодиагностики

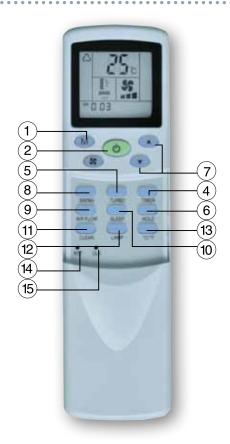
Автоматический перезапуск

Выбор дизайна Простота управления

Интеллектуальное размораживание

Крышка защиты вентилей Надежность

Стандарт


Опция

- **Кнопка ВКЛ/ВЫКЛ (ON/OFF)** служит для запуска и остановки кондиционера.
- **Кнопки АВТО (AUTO), H, M, L** служат для выбора скорости воздуха (автоматическая, высокая, средняя или низкая скорость).
- **Кнопка ТАЙМЕР (TIMER)** служит для выставления времени включения/отключения в часах
- Кнопка ТУРБО (TURBO) переводит кондиционер в режим ТУРБО. Установка спящего режима или смена режима отменяет режим ТУРБО.
- Кнопка УСТАНОВКА ТЕМПЕРАТУРЫ (TEMP) нажатие «—»/«+» уменьшает или увеличивает выставленную температуру в диапазоне: 16~32 °C.
- Кнопка ПОВОРОТ (SWING) используется для активации вертикальных жалюзи.

- Кнопка ПОТОК ВОЗДУХА (AIR FLOW) используется для активации горизонтальных жалюзи.
- Кнопка СПЯЩИЙ РЕЖИМ (SLEEP) используется для выбора спящего режима или его отмены.
- **Кнопка БЛОКИРОВКА (HOLD)** используется для выбора режима блокировки кнопок или отмены этого режима.
- **Кнопка ОЧИСТКА (CLEAN)** используется для активации режима очистки или его отмены.
- Кнопка ПОДСВЕТКА (LAMP) используется для выбора включения или выключения подсветки.
- **Кнопка ЭНЕРГОСБЕРЕГАЮЩИЙ РЕ- ЖИМ (ЕСО)** устанавливает кондиционер в энергосберегающий режим.
- **Кнопка C/F** используется для выбора температурной шкалы.

1. Режим работы

Переключение режимов работы кондиционера в следующем порядке: «Авто» \to «Охлаждение» \to «Осушение» \to «Обогрев» \to «Вентиляция».

2. Вкл./Выкл.

Включение и выключение кондиционера.

3. Скорость вращения вентилятора

Изменение скорости вращения вентилятора.

4. Установка таймера

Настройка таймера включения и выключения кондиционера.

5. Кнопка «TURBO» («Турбо»)

Включение режима «Турбо» (не работает в режимах «Авто», «Осушка», «Вентиляция»).

6. Кнопка блокировки

Кнопка блокировки пульта от случайного нажатия.

7. Установка температуры

Кнопками «Больше» или «Меньше» выбирается необходимая в помещении температура.

8. Управление горизонтальными воздушными заслонками

Изменяет направление воздушного потока по вертикали.

9. Управление вертикальными воздушными заслонками

Изменение направления потока воздуха по горизонтали.

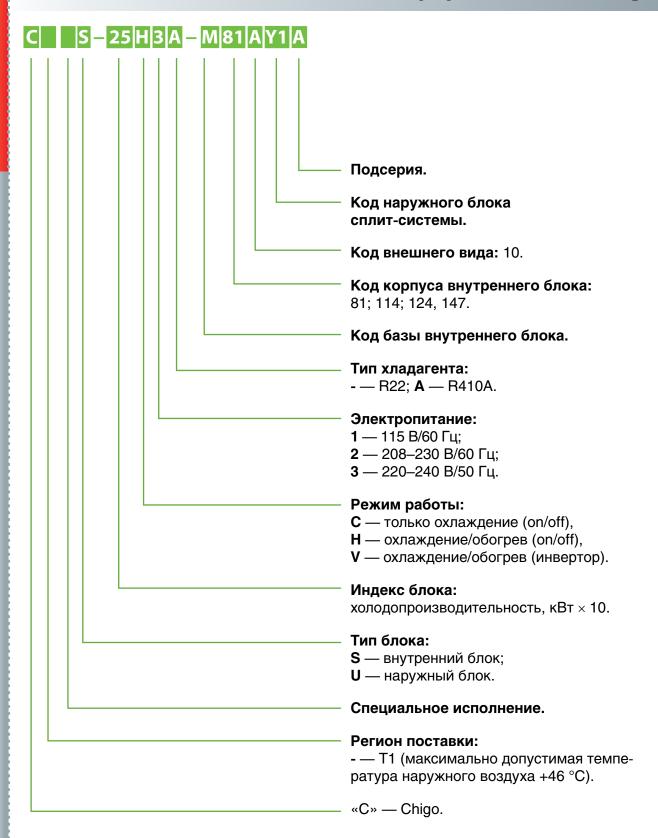
10. Ночной режим

Активация ночного режима работы с пониженным уровнем шума и автоматическим поддержанием температуры в помещении.

11–12. Кнопки «LAMP» («Подсветка») и «CLEAN» («Очистка»)

Включение/отключение подсветки дисплея внутреннего блока и активация функций очистки воздуха.

13. Температура


Выбор шкалы температур °С/°F

14. Сброс (RST)

Сброс настроек пульта.

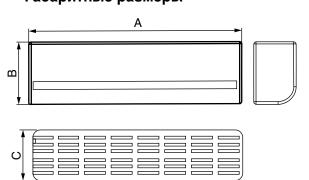
15. Часы (СЦК)

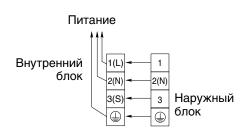
Настройка часов.

Настенные сплит-системы

Мощ- ность, БТЕ	Настенная сплит- система 114 DC-инвертор	Настенная сплит- система 147 DC-инвертор	Настенная сплит- система 114 on/off	Настенная сплит- система 147 on/off	Настенная сплит- система 124 on/off	Настенная сплит- система 81 on/off
7 000						
9 000						
12 000						
18 000						
22 000						
24000						

Напольные колонные кондиционеры

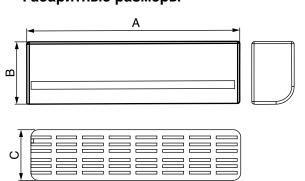

Мощность Модель продукции	12,0 кВт	14,0 кВт
Колонный тип дизайн 41		



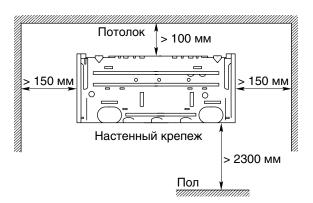
Модель	А, мм	В, мм	С, мм
CS-25V3A-M114	800	280	190
CS-35V3A-M114	800	280	190
CS-51V3A-M114	800	292	215

Настенные сплит-системы (DC-инвертор)

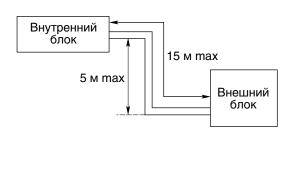
Модель в	нутреннего б	лока	CS-25V3A- M114	CS-35V3A- M114	CS-51V3A- P114
Модель внешнего блока		ока	CU-25V3A- M114	CU-35V3A- M114	CU-51V3A- P114
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность Охлажде ние		Вт	2600 (1600–3300)	3500 (2200–3800)	5 100 (2 400–5 600)
	Обогрев	Вт	2700 (1700–3500)	3700 (2400–4000)	5 500 (2 500–6 400)
Потребля- емая мощ-	Охлажде- ние	Вт	770 (420–1 200)	1 092 (600–1 400)	1 560 (590–1 820)
НОСТЬ	Обогрев	Вт	800 (430–1 250)	1 024 (600–1 300)	1 520 (600–1 960)
Рабочий ток	Охлажде- ние	А	3,6 (1,8–5,4)	4,8 (2,6–6,0)	7,1 (2,7–8,3)
	Обогрев	А	3,6 (1,9–5,7)	4,5 (2,6–5,8)	7,0 (2,7–8,9)
EER		_	3,37	3,21	3,27
COP		_	3,38	3,61	3,62
Класс энерго	эффективност	ги	Α	Α	Α
Расход воздуха	Внутренний блок	м ³ /ч	400	500	850
Уровень звукового	Внутренний блок	дБ(А)	31–41	30–38	39–42
давления	Наружный блок	дБ(А)	53	52	55
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	−7+24
Диаметр жид линии	костной	ММ	Ø6,35	Ø 6 ,35	Ø6,35
Диаметр газо	вой линии	ММ	Ø9,52	Ø9,52	Ø12,70
Максимальна	я длина	М	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	800×280×190	800×280×190	900×292×215
(Ш×В×Г)	Наружный блок	ММ	715×540×235	715×540×235	850×605×295
Вес нетто	Внутренний блок	КГ	10,0	10,0	13,0
	Наружный блок	КГ	29,0	29,0	40,0
Габариты упаковки	Внутренний блок	ММ	865×358×275	865×358×275	983×377×300
(Ш×В×Г)	Наружный блок	ММ	851×600×335	851×600×335	995×690×415
Вес брутто	Внутренний блок	КГ	12,0	12,0	15,0
	Наружный	КГ	33,0	33,0	45,0


Дизайн блока 147 (DC-инвертор)

Габаритные размеры

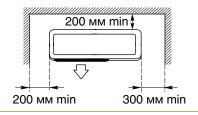


Модель	А, мм	В, мм	С, мм
CS-25V3A-V147	745	250	195
CS-35V3A-M147	800	280	190
CS-51V3A-P147	900	292	215
CS-70V3A-W147	1 080	302	220

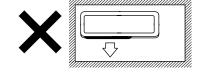

Настенные сплит-системы (DC-инвертор)

Модель внутреннего блока		CS-25V3A- V147	CS-35V3A- M147	CS-51V3A- P147	CS-70V3A- W147	
Модель	Модель наружного блока		CU-25V3A- V147	CU-35V3A- M147	CU-51V3A- P147	CU-70V3A- W147
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	2650 (1600–2800)	3500 (2200–3800)	5100 (2400–5600)	7000 (2500–8500)
	Обогрев	Вт	2900 (1800–3600)	3700 (2400–4000)	5500 (2500–6400)	7400 (3000–8200)
Потребляе- мая мощ-	Охлажде- ние	Вт	825 (490–1 100)	1 100 (600–1 400)	1 560 (590–1 820)	2200 (700–3000)
ность	Обогрев	Вт	800 (420–1 200)	1 020 (600–1 300)	1 520 (600–1 960)	2050 (700–3000)
Рабочий ток	Охлажде- ние	А	3,8 (2,3–5,4)	4,8 (2,6–6,0)	7,1 (2,7–8,3)	9,8 (3,2–13,6)
	Обогрев	Α	3,5 (2,0–5,7)	4,5 (2,6–5,8)	7,0 (2,7–8,9)	9,3 (3,2–13,6)
EER		_	3,21	3,21	3,27	3,21
COP		_	3,62	3,61	3,62	3,61
Класс энерго	эффективност	ГИ	Α	Α	Α	А
Расход воздуха	Внутренний блок	м ³ /ч	450	500	850	1 050
Уровень звукового	Внутренний блок	дБ(А)	30–38	30–38	39–42	42–48
давления	Наружный блок	дБ(А)	52	52	55	56
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	−7+24	−7+24
Диаметр газо	вой линии	MM	Ø9,52	Ø9,52	Ø12,7	Ø15,88
Диаметр жид линии	костной	ММ	Ø6,35	Ø6,35	Ø6,35	Ø9,52
Максимальна	ая длина	М	15,0	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	745×250×195	800×280×190	900×292×215	1 080×302×220
(Ш×В×Г)	Наружный блок	ММ	715×540×235	715×540×235	850×605×295	870×700×310
Вес нетто	Внутренний блок	КГ	9,0	10,0	13,0	16,0
	Наружный блок	КГ	29,0	29,0	40,0	58,0
Габариты упаковки	Внутренний блок	ММ	835×330×278	865×358×275	983×377×300	1275×392×318
(Ш×В×Г)	Наружный блок	ММ	851×600×335	851×600×335	995×690×415	990×780×410
Вес брутто	Внутренний блок	КГ	11,0	12,0	15,0	20,0
	Наружный блок	КГ	33,0	33,0	45,0	64,0

Монтаж внутреннего блока


Перепад высот при монтаже

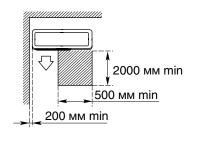
Монтаж наружного блока



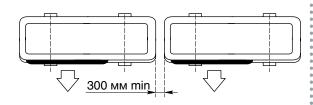
Когда воздуховыводящее отверстие открыто

Если препятствия находятся вокруг кондиционера с четырех сторон

Несмотря на то, что сверху кондиционера препятствия отсутствуют, в данном случае установка кондиционера запрещена.


По крайней мере одна сторона должна быть открыта.

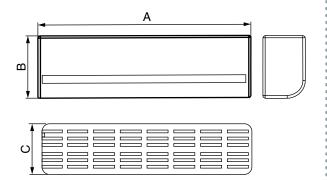
Если существуют препятствия только перед кондиционером

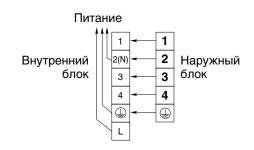


Пространство для сервисного обслуживания

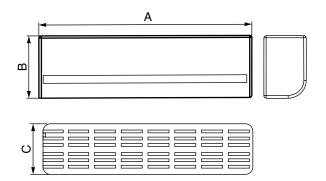
Оставьте пространство для сервисного обслуживания перед кондиционером. Руководствуйтесь данным рисунком.

Расстояние между параллельно установленными блоками





Модель	А, мм	В, мм	С, мм
CS-25H3A-M114	800	280	190
CS-35H3A-M114	800	280	190
CS-51H3A-P114	900	292	215
CS-61H3A-P114	900	292	215

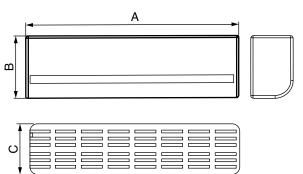

Настенные сплит-системы (on/off)


Модель в	внутреннего б	лока	CS-25H3A- M114	CS-35H3A- M114	CS-51H3A- P114	CS-61H3A- P114
Модель	наружного бл	юка	CU-25H3A- M114	CU-35H3A- M114	CU-51H3A- P114	CU-61H3A- P114
Электропита	ние	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	2780	3500	5100	6400
	Обогрев	Вт	2780	3700	5 500	6600
Потребляе- мая мощ-	Охлажде- ние	Вт	865	1 090	1 590	1 990
НОСТЬ	Обогрев	Вт	770	1 020	1 600	1 940
Рабочий ток	Охлажде- ние	Α	3,9	5,0	6,8	8,9
	Обогрев	Α	3,4	4,6	6,9	8,7
EER			3,21	3,21	3,21	3,22
COP		_	3,61	3,63	3,44	3,40
Класс энерго	эффективност	ГИ	Α	Α	Α	Α
Расход воздуха	Внутренний блок	м ³ /ч	400	500	800	900
Уровень звукового	Внутренний блок	дБ(А)	26–35	30–40	37–44	42–46
давления	Наружный блок	дБ(А)	51	54	54	54
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	−7+24	−7+24
Диаметр газо	овой линии	ММ	Ø9,52	Ø9,52	Ø12,7	Ø12,7
Диаметр жид линии	костной	ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35
Максимальна	ая длина	М	15,0	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	800×280×190	800×280×190	900×292×215	900×292×215
(Ш×В×Г)	Наружный блок	ММ	700×500×225	715×540×235	795×540×255	850×605×295
Вес нетто	Внутренний блок	КГ	10,0	10,0	13,0	14,0
	Наружный блок	КГ	25,0	28,0	38,0	45,0
Габариты упаковки	Внутренний блок	ММ	865×358×275	865×358×275	983×377×300	983×377×300
(Ш×В×Г)	Наружный блок	ММ	825×550×320	851×600×335	920×595×335	995×690×415
Вес брутто	Внутренний блок	КГ	12,0	12,0	15,0	17,0
	Наружный блок	КГ	29,0	33,0	42,0	51,0

Модель	А, мм	В, мм	С, мм	Модель	А, мм	В, мм	С, мм
CS-21H3A-V147	745	250	195	CS-51H3A-P147	900	292	215
CS-25H3A-V147	745	250	195	CS-61H3A-P147	900	292	215
CS-32H3A-V147	745	250	195	CS-70H3A-W147	1 080	302	220

Настенные сплит-системы (on/off)

Модель в	нутреннего б	лока	CS-21H3A- V147	CS-25H3A- V147	CS-32H3A- V147
Модель внешнего блока		ока	CU-21H3A- V147	CU-25H3A- V147	CU-32H3A- V147
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	2130	2700	3200
	Обогрев	Вт	2250	2750	3500
Потребляе- мая мощ-	Охлажде- ние	Вт	760	840	1 060
НОСТЬ	Обогрев	Вт	700	760	1025
Рабочий ток	Охлажде- ние	А	3,3	3,8	4,8
	Обогрев	Α	3,1	3,5	4,9
EER		_	2,8	3,21	3,02
COP		_	3,2	3,62	3,41
Класс энерго	эффективност	ги	С	Α	В
Расход воздуха	Внутренний блок	м³/ч	400	500	500
Уровень звукового	Внутренний блок	дБ(А)	30–38	30–39	32–40
давления	Наружный блок	дБ(А)	51	51	54
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	−7+24
Диаметр жид линии	костной	ММ	Ø6,35	Ø6,35	Ø6,35
Диаметр газо	вой линии	ММ	Ø9,52	Ø9,52	Ø 9 ,52
Максимальна	ія длина	М	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	745×250×195	745×250×195	745×250×195
(Ш×В×Г)	Наружный блок	ММ	670×430×250	700×500×225	715×540×235
Вес нетто	Внутренний блок	КГ	9,0	9,0	9,0
	Наружный блок	КГ	21,0	25,0	28,0
Габариты упаковки	Внутренний блок	ММ	833×330×278	833×330×278	833×330×278
(Ш×В×Г)	Наружный блок	ММ	810×475×360	825×550×320	851×600×335
Вес брутто	Внутренний блок	КГ	11,0	11,0	11,0
	Наружный блок	КГ	25,0	29,0	33,0

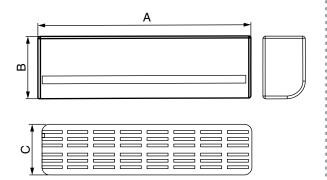

Настенные сплит-системы (on/off)

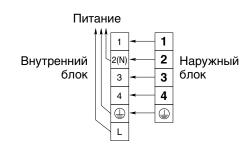
Модель внутреннего блока		CS-51H3A- P147	CS-61H3A- P147	CS-70H3A- W147	
Модель внешнего блока		CU-51H3A- P147	CU-61H3A- P147	CS-70H3A- W147	
Электропитание В/ф/Гц		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	4900	6000	7000
	Обогрев	Вт	5 100	6200	7200
Потребляе- мая мощ-	Охлажде- ние	Вт	1740	2135	2325
ность	Обогрев	Вт	1410	1 800	2100
Рабочий ток	Охлажде- ние	А	7,9	9,5	10,5
	Обогрев	Α	6,4	8,0	9,4
EER		_	2,82	2,81	3,00
COP		_	3,62	3,44	3,43
Класс энерго	эффективнос	ги	С	С	В
Расход воздуха	Внутренний блок	м³/ч	800	900	1050
Уровень звукового	Внутренний блок	дБ(А)	37–44	42–46	42–48
давления	Наружный блок	дБ(А)	54	54	56
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	-7+24
Диаметр жидкостной линии		ММ	Ø 6 ,35	Ø6,35	Ø9,52
Диаметр газо	вой линии	ММ	Ø12,7	Ø12,7	Ø15,88
Максимальна	ая длина	М	15,0	15,0	15,0
Максимальный перепад высот		М	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	900×292×215	900×292×215	1080×302×220
(Ш×В×Г)	Наружный блок	ММ	812×540×256	850×605×295	870×700×310
Вес нетто	Внутренний блок	КГ	13,0	14,0	16,0
	Наружный блок	КГ	36,0	40,0	58,0
Габариты упаковки	Внутренний блок	ММ	983×377×300	983×377×300	1275×392×318
(Ш×В×Г)	Наружный блок	ММ	920×595×335	995×690×415	990×780×410
Вес брутто	Внутренний блок	КГ	15,0	17,0	20,0
	Наружный блок	КГ	40,0	45,0	64,0

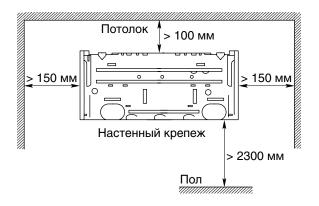
Модель	А, мм	В, мм	С, мм
CS-21H3A-V124	745	250	195
CS-25H3A-V124	745	250	195
CS-32H3A-V124	745	250	195
CS-51H3A-P124	900	292	215
CS-61H3A-P124	900	292	215

Настенные сплит-системы (on/off)

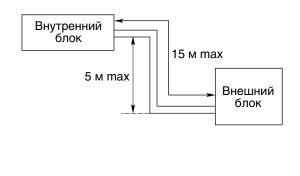
Модель внутреннего блока		CS-21H3A- V124	CS-25H3A- V124	CS-32H3A- V124	
Модель внешнего блока		CU-21H3A- V124	CU-25H3A- V124	CU-32H3A- V124	
Электропита	ние	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	2110	2700	3200
	Обогрев	Вт	2200	2750	3500
Потребляе- мая мощ-	Охлажде- ние	Вт	750	840	1 060
ность	Обогрев	Вт	730	760	1 025
Рабочий ток	Охлажде- ние	Α	2,7	3,8	4,8
	Обогрев	Α	2,9	3,5	4,9
EER		_	2,81	3,21	3,02
COP		_	3,01	3,62	3,41
Класс энерго	эффективнос	ги	С	Α	В
Расход воздуха	Внутренний блок	м ³ /ч	450	500	500
Уровень звукового	Внутренний блок	дБ(А)	31–40	30–39	32–40
давления	Наружный блок	дБ(А)	51	51	54
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43	+18+43
температур	Обогрев	°C	−7+24	−7+24	−7+24
Диаметр жидкостной линии		ММ	Ø 6 ,35	Ø6,35	Ø6,35
Диаметр газо	вой линии	ММ	Ø9,52	Ø9,52	Ø9,52
Максимальна	ая длина	М	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	745×250×195	745×250×195	745×250×195
(Ш×В×Г)	Наружный блок	ММ	680×482×225	700×500×225	715×540×235
Вес нетто	Внутренний блок	КГ	9,0	9,0	9,0
	Наружный блок	КГ	25,0	25,0	28,0
Габариты упаковки	Внутренний блок	ММ	833×330×278	833×330×278	833×330×278
(Ш×В×Г)	Наружный блок	ММ	822×535×345	825×550×320	851×600×335
Вес брутто	Внутренний блок	КГ	11,0	11,0	11,0
	Наружный блок	КГ	29,0	29,0	33,0


Настенные сплит-системы (on/off) (окончание)


Модель внутреннего блока		CS-51H3A- P124	CS-61H3A- P124	
Модель внутреннего блока		CU-51H3A- P124	CU-61H3A- P124	
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	4900	6000
	Обогрев	Вт	5100	6200
Потребляе- мая мощ-	Охлажде- ние	Вт	1740	2135
НОСТЬ	Обогрев	Вт	1410	1800
Рабочий ток	Охлажде- ние	A	7,9	9,5
	Обогрев	Α	6,4	8,0
EER		_	2,82	2,81
COP		_	3,62	3,44
Класс энерго	эффективност	ги	С	С
Расход воздуха	Внутренний блок	М ³ /Ч	800	900
Уровень звукового	Внутренний блок	дБ(А)	37–44	42–46
давления	Наружный блок	дБ(А)	54	54
Диапазон рабочих	Охлажде- ние	°C	+18+43	+18+43
температур	Обогрев	°C	− 7+24	−7+24
Диаметр жид линии	костной	ММ	Ø6,35	Ø6,35
Диаметр газо	вой линии	ММ	Ø12,7	Ø12,7
Максимальна	ая длина	М	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	900×292×215	900×292×215
(Ш×В×Г)	Наружный блок	ММ	812×540×256	850×605×295
Вес нетто	Внутренний блок	КГ	13,0	14,0
	Наружный блок	КГ	36,0	40,0
Габариты упаковки	Внутренний блок	ММ	983×377×300	983×377×300
(Ш×В×Г)	Наружный блок	ММ	920×595×335	995×690×415
Вес брутто	Внутренний блок	КГ	15,0	17,0
	Наружный блок	КГ	40,0	45,0

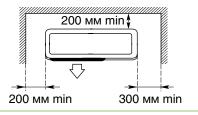


Модель	А, мм	В, мм	С, мм
CS-21H3A-B81	680	252	206
CS-25H3A-B81	680	252	206
CS-32H3A-V81	745	250	195


Настенные сплит-системы (on/off)

Модель внутреннего блока		CS-21H3A- B81	CS-25H3A- B81	CS-32H3A- V81	
Модель наружного блока		CU-21H3A- B81	CU-25H3A- B81	CU-32H3A- V81	
Электропитание В/ф/Гі		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлажде- ние	Вт	1 800	2300	3200
	Обогрев	Вт	1 800	2300	3500
Потребляе- мая мощ-	Охлажде- ние	Вт	615	780	1 060
ность	Обогрев	Вт	630	700	1 025
Рабочий ток	Охлажде- ние	A	3,1	3,4	4,8
	Обогрев	Α	2,7	3,0	4,9
EER		_	2,93	2,95	3,02
COP		_	2,86	3,29	3,41
Класс энерго	эффективност	ги	С	С	В
Расход воздуха	Внутренний блок	М ³ /Ч	400	400	500
Уровень звукового давления	Внутренний блок	дБ(А)	29–37	31–37	32–40
	Наружный блок	дБ(А)	49	49	54
Диапазон рабочих температур	Охлажде- ние	°C	+18+43	+18+43	+18+43
	Обогрев	°C	−7+24	−7+24	−7+24
Диаметр газо	вой линии	ММ	Ø 9 ,53	Ø9,53	Ø9,53
Диаметр жид линии	костной	ММ	Ø6,35	Ø6,35	Ø6,35
Максимальна	ая длина	М	15,0	15,0	15,0
Максимальны высот	ый перепад	М	5,0	5,0	5,0
Габаритные размеры	Внутренний блок	ММ	680×252×206	680×252×206	745×250×195
(Ш×В×Г)	Наружный блок	ММ	670×430×250	670×430×250	715×540×235
Вес нетто	Внутренний блок	КГ	8,0	8,0	9,0
	Наружный блок	КГ	21,0	21,0	28,0
Габариты упаковки	Внутренний блок	ММ	748×316×263	748×316×263	833×330×278
(Ш×В×Г)	Наружный блок	ММ	810×475×360	810×475×360	851×600×335
Вес брутто	Внутренний блок	КГ	10,0	10,0	11,0
	Наружный блок	КГ	25,0	25,0	33,0

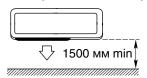
Монтаж внутреннего блока


Перепад высот при монтаже

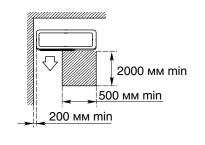
Монтаж наружного блока



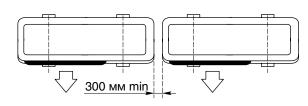
Когда воздуховыводящее отверстие открыто


Если препятствия находятся вокруг кондиционера с четырех сторон

Несмотря на то, что сверху кондиционера препятствия отсутствуют, в данном случае установка кондиционера запрещена.


По крайней мере одна сторона должна быть открыта.

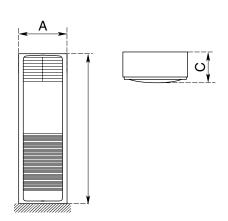
Если существуют препятствия только перед кондиционером

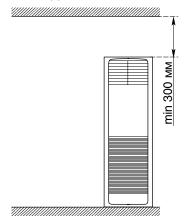


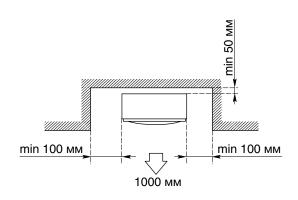
Пространство для сервисного обслуживания

Оставьте пространство для сервисного обслуживания перед кондиционером. Руководствуйтесь данным рисунком.

Расстояние между параллельно установленными блоками

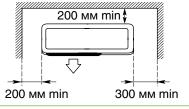



Модель	А, мм	В, мм	С, мм
CFI-120A6A-E41	1868	600	313
CFI-140A6A-E41	1868	600	313

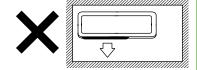

Напольные колонные кондиционеры

	Модель внутр	еннего блока		CFI-120A6A-E41	CFI-140A6A-E41
	Модель внег	шнего блока		CFO-120A6A-E41	CFO-140A6A-E41
Электро	питание		В/ф/Гц	380/3/50	380/3/50
Охлаж-	Мощность охл	аждения	Вт	12000	14000
дение	Потребляемая	я мощность	Вт	4200	5200
	Рабочий ток		Α	7,2	9,4
	EER		_	2,86	2,69
Обо-	Мощность обо	огрева	Вт	13200	14500
грев	Потребляемая	я мощность	Вт	4300	5800
	Рабочий ток		Α	7,4	10,4
	COP		_	3,07	2,50
Вну- трен-	Расход воздух (High/Med/Low	сход воздуха gh/Med/Low)		1 800	1 900
ние блоки	Уровень звуко	вого давления	дБ(А)	57	57
	Размеры (Д×Е	Размеры (Д×В×Г)		600×1868×313	600×1868×313
	Размеры упак	овки (Д×В×Г)	ММ	750×2085×520	750×2085×520
	Вес нетто / бр	утто	КГ	61 / 75	61 / 75
Наруж-	Уровень звуко	вого давления	дБ(А)	67	67
ные блоки	Размеры (Д×Е	В×Г)	ММ	970×1237×345	970×1 237×345
	Размеры упак	овки (Д×В×Г)	ММ	1 125×1 385×485	1 125×1 385×485
	Вес нетто / бр	утто	КГ	105 / 115	105 / 115
	Тип хладагент	a		R410A	R410A
	Заправка хлад	дагента	Г	3500	3900
	н рабочих	Охлаждение	°C	+18+43	+18+43
темпера	тур	Обогрев	°C	−7+24	−7+24
Диаметр	жидкостной лі	инии	ММ	Ø9,52	Ø9,52
Диаметр	газовой линии	1	ММ	Ø19,05	Ø19,05
Максима	альная длина тр	оассы	М	15	15
Максима	альный перепад	д высот	М	5	5

Пространство для монтажа



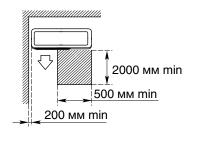
Монтаж наружного блока



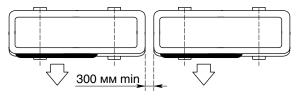
Когда воздуховыводящее отверстие открыто


Если препятствия находятся вокруг кондиционера с четырех сторон

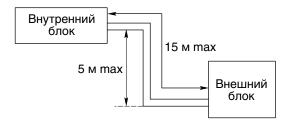
Несмотря на то, что сверху кондиционера препятствия отсутствуют, в данном случае установка кондиционера запрещена.


По крайней мере одна сторона должна быть открыта.

Если существуют препятствия только перед кондиционером



Пространство для сервисного обслуживания

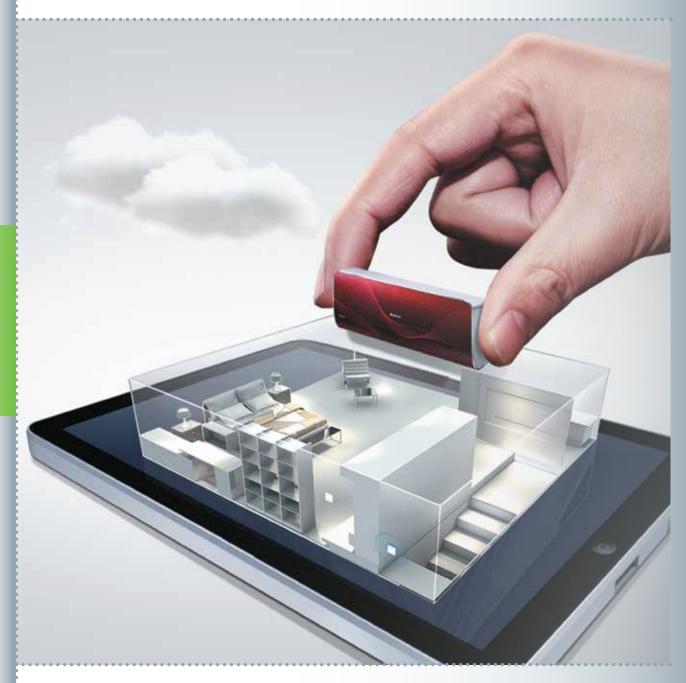

Оставьте пространство для сервисного обслуживания перед кондиционером. Руководствуйтесь данным рисунком.

Расстояние между параллельно установленными блоками

Перепад высот при монтаже

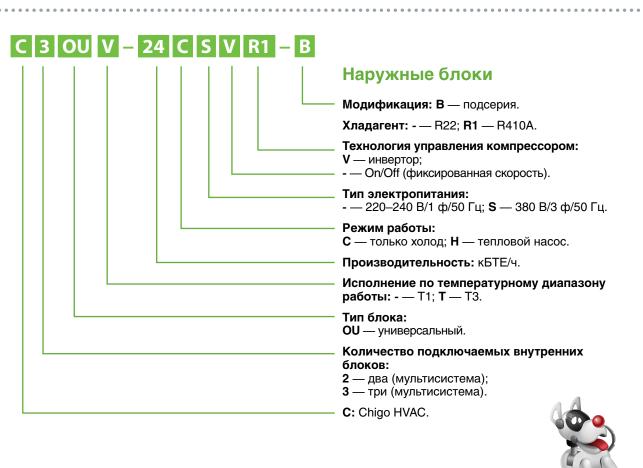
Бытовой осушитель воздуха

Мощные бытовые осушители воздуха для помещений с повышенной влажностью:


- объем контейнера для сбора конденсатора 2,5 л;
- удобно отслеживать уровень воды в баке:
- при заполнении контейнера устройство отключается автоматически.

Интеллектуальная осушка — позволяет снизить уровень влажности воздуха в помещении, а также снизить рост бактерий.

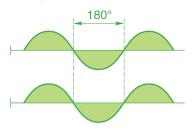
Модель		CBD-12H3E-C09Z	CBD-18H3E-C09Z	
Электропитание	В/ф/Гц	220~240/1/50	220~240/1/50	
Производительность (30 °C, 80%)	л/день	12	18	
	кг/ч	0,55	0,74	
Потребляемая мощность (30 °C,80%)	Вт	260	390	
Емкость контейнера	Л	2,5	2,5	
Уровень шума	дБ(А)	46	46	
Диапазон рабочих температур	°C	5~32	5~32	
Тип хладагента		R134a	R134a	
Тип компрессора		Ротационный		
Габаритные размеры (Д×В×Г)	ММ	260×485×285	260×485×285	
Габариты упаковки (Д×В×Г)	ММ	345×525×305	345×525×305	



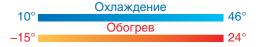
Мультисистемы

-							
Произво- дитель- ность, БТЕ/ч	7000	9 000	12000	14000	18 000	21 000	27000
Настенные внутрен- ние блоки серии 84			_				
Наружные блоки (1:2)							
Наружные блоки (1:3)						0	0

DC-инверторные наружные блоки для мультисистем



Система с двумя внутренними блоками



Система с тремя внутренними блоками

Синусоидальное управление компрессором — более высокая эффективность при низком уровне энергопотребления и шума.

Широкий диапазон рабочих температур: охлаждение от 10 до 46 $^{\circ}$ C, обогрев от –15 до 24 $^{\circ}$ C.

Новый дизайн блока управления. Японские комплектующие. Защита от перегрева.

Модуль инвертора охлаждается потоком воздуха, его температура поддерживается ниже 90 °C.

Применение коррозионностойких материалов гарантирует длительный период эксплуатации электронных компонентов.

Динамический контроль распределения хладагента и использование надежной системы управления обеспечивают поддержание высокого уровня комфорта.

Высокий уровень эффективности, соответствующий высоким европейским стандартам.

DC-инверторные наружные блоки для мультисистем

	Нар	ужный блок		C20U-1	4HVR1	C20U-1	C20U-18HVR1	
Электрог	іита	ние	В/ф/Гц	220~24	10/1/50	220~24	0/1/50	
Комбина	ция	внутренних	блоков	1:1	1:2	1:1	1:2	
Охлаж- дение		ОИЗВОДИ- ЬНОСТЬ	кВт	2,1–3,5	4,1	2,1–3,5	5,3	
		гребляемая цность	Вт	600–1 040	1270	600–1 050	1610	
	Pac	очий ток	Α	3,0–5,1	5,7	3,0–5,1	7,2	
	EEF	7	_	3,2	23	3,2	8	
Обо- грев		оизводи- ьность	кВт	2,5–4,1	5,0	2,5–4,1	6,1	
		гребляемая цность	Вт	660–1 084	1 255	660–1 090	1 690	
	Pac	очий ток	Α	3,3–5,4	5,7	3,3–5,4	7,6	
	СО	Р		3,9	97	3,6	1	
Максима. бляемая			Вт	1410	1 650	1780 2270		
Максима	льн	ый ток	Α	6,3	7,4	8,8 10,2		
Компрес- Тип			И	нверторный сдв	оенный роторны	й		
cop		Производит	ель	Mitsu	ıbishi	Mitsul	bishi	
Расход в	озду	⁄xa	м ³ /ч	25	00	250	00	
Уровень : давления		кового	дБ(А)	57		57		
Диапазон рабочих		Охлажде- ние	°C	+10+46		+10+46		
температ	ур	Обогрев	°C	–15	.+24	–15	+24	
Размеры	(Д×	В×Г)	ММ	940×60)8×332	940×60	8×332	
Размеры (Д×В×Г)	упа	ковки	ММ	995×68	30×415	995×68	0×415	
Вес нетто)		КГ	38	3,0	39,	0	
Вес брут	го		КГ	41	,0	42,	0	
Хлада-	Тиг			R41	I0A	R41	0A	
гент	Кол	ичество	Г	11	50	1 45	50	
Диаметр линии	жид	цкостной	ММ	Ø6	,35	Ø6,	35	
Диаметр	газо	овой линии		Ø 9	,52	∅9,	52	
Суммарн	ая д	_І лина	М	3	0	30)	
Максима.	ЛЬНЬ	ый перепад	М	1	0	10		
Максима	льна	ая длина	М	2	0	20		

DC-инверторные наружные блоки для мультисистем (окончание)

	Нар	ужный блок		C	30U-21HVR	11	C30U-27HVR1		
Электро	пита	ние	В/ф/Гц	2	20~240/1/5	0	2	20~240/1/5)
Комбина	ция	внутренних	блоков	1:1	1:2	1:3	1:1	1:2	1:3
Охлаж- дение		изводи- ьность	кВт	2,1–3,5	4,1–5,3	6,2	2,1–5,3	4,1–7,1	7,9
		ребляемая цность	Вт	600– 1 040	1213– 1584	1860	600– 1 040	1 181– 2087	2400
	Раб	очий ток	Α	3,0–5,1	6,0–7,8	8,3	3,0–5,1	5,8–10,3	10,6
	EEF	3	_		3,31			3,30	
Обо- грев		изводи- ьность	кВт	2,5–4,1	5,0–6,1	7,5	2,5–5,8	5,0–8,1	9,2
		ребляемая цность	Вт	648– 1 062	1 318– 1 630	2000	657– 1 542	1325– 2182	2480
	Раб	очий ток	Α	3,2–5,2	6,5–8,1	8,9	3,2–7,6	6,5–10,8	11,0
	COF)	_		3,63			3,62	
Максима бляемая		ая потре- цность	Вт	1 560	2170	2650	1940 2510 3000		
Максима	Лаксимальный ток А			8,1	10,2	11,8	10,0	11,8	13,3
Компрессор Тип					Инверто	орный сдво	реннный ро	торный	
	Производител		гель		Mitsubishi			Mitsubishi	
Расход в	Расход воздуха м ³		м ³ /ч		2880			3100	
Уровень давлени:		ового	дБ(А)	57			57		
Диапазо рабочих		Охлажде- ние	°C	+10+46			+10+46		
темпера	тур	Обогрев	°C		-15+24		– 15 + 24		
Размерь	ı (Д×	В×Г)	ММ	9	00×840×33	2	900×840×332		
Размерь (Д×В×Г)	і упа	ковки	ММ	10	030×960×44	40	1	030×960×44	0
Вес нетт	0		КГ		51,0		53,0		
Вес брут	то		КГ		56,0			58,0	
Хлада-	Тип				R410A			R410A	
гент	Кол	ичество	Γ		1 550			2000	
Диаметр линии	жид	₍ костной	ММ	Ø6,35				Ø6,35	
Диаметр	Диаметр газовой линии мм		Ø9,52				Ø9,52		
Суммарн	ная д	лина	М	45			45		
Максима высот	ЛЬНЬ	ый перепад	М		10		10		
Максима	ильна	ая длина	М		20			20	

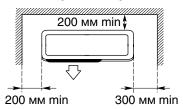
Внутренние блоки мультисистем

	Внутренний блок		CSG-07HVR1	CSG-09HVR1	CSG-12HVR1	CSG-18HVR1
Электро	питание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Охлаж- дение	Производи- тельность	кВт	2,1	2,6	3,5	5,3
	Потребляемая мощность	Вт	40	40	40	50
	Номинальный ток	А	0,2	0,2	0,2	0,2
Обо- грев	Производи- тельность	кВт	2,5	3,1	4,1	5,8
	Потребляемая мощность	Вт	40	40	40	50
	Номинальный ток	Α	0,2	0,2	0,2	0,2
Расход в	воздуха	м ³ /ч	390	430	560	800
Уровень ления (Н	звукового дав- i/Med/Lo)	дБ(А)	30/28/26	33/30/27	35/32/28	43/39/35
Размерь	ı (Д×В×Г)	ММ	800×287×192	800×287×192	800×287×192	900×282×202
Размерь (Д×В×Г)	і упаковки	ММ	865×358×275	865×358×275	865×358×275	983×377×300
Вес нетт	О	КГ	9,0	9,0	10,0	12,0
Вес брут	то	КГ	11,0	11,0	12,0	15,0
Хладаге	нт	Тип	R410A	R410A	R410A	R410A
Диаметр линии	жидкостной	ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35
Диаметр	газовой линии	ММ	Ø9,52	Ø9,52	Ø9,52	Ø12,7
Диаметр	дренажа	ММ	DN25	DN25	DN25	DN25

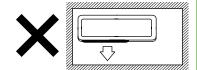
Возможные комбинации внутренних и наружных блоков

Тип	Внешний		Внутрен	ний блок		Комбинации
	блок	CSG- 7HVR1	CSG- 9HVR1	CSG- 12HVR1	CSG- 18HVR1	
		•				7
			•			9
	A			•		12
		• •				7 + 7
		•	•			7 + 9
		•		•		7 + 12
			• •			9 + 9
	C2OU-14HV		•	•		9 + 12
1:2		•				7
	88		•			9
				•		12
		• •				7 + 7
		•	•			7 + 9
		•		•		7 + 12
			• •			9 + 9
	C2OU-18HV		•	•		9 + 12
	0200-10114			• •		12 + 12
		•				7
			•			9
				•		12
		• •				7 + 7
		•	•			7 + 9
		•		•		7 + 12
	6		• •			9 + 9
			•	•		9 + 12
				• •		12 + 12
1:3	CHO STOCKS	• • •				7 + 7 + 7
		• •	•			7 + 7 + 9
	110000000000000000000000000000000000000	• •		•		7 + 7 + 12
		•	• •			7 + 9 + 9
	C3OU-21HV	•	•	•		7 + 9 + 12
		•		• •		7 + 12 + 12
			• • •			9 + 9 + 9
			• •	•		9 + 9 + 12
			•	• •		9 + 12 + 12
				• • •		12 + 12 + 12

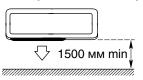
Возможные комбинации внутренних и наружных блоков (окончание)


Тип	Внешний		Внутрен	ний блок		Комбинации
	блок	CSG- 7HVR1	CSG- 9HVR1	CSG- 12HVR1	CSG- 18HVR1	
		•				7
			•			9
				•		12
					•	18
		• •				7 + 7
		•	•			7 + 9
		•		•		7 + 12
		•			•	7 + 18
			• •			9 + 9
			•	•		9 + 12
	∆ teste		•		•	9 + 18
				• •		12 + 12
				•	•	12 + 18
	1000 0000				• •	18 + 18
1:3		• • •				7 + 7 + 7
		• •	•			7 + 7 + 9
		• •		•		7 + 7 + 12
	C3OU-27HV	• •			•	7 + 7 + 18
	3333 <u>2</u> 1111	•	• •			7 + 9 + 9
		•	•	•		7 + 9 + 12
		•	•		•	7 + 9 + 18
		•		• •		7 + 12 + 12
		•		•	•	7 + 12 + 18
			• • •			9 + 9 + 9
			• •	•		9 + 9 + 12
			• •		•	9 + 9 + 18
			•	• •		9 + 12 + 12
			•	•	•	9 + 12 + 18
				• •	•	12 + 12 + 8

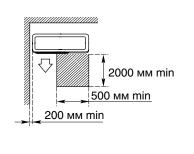
Монтаж наружного блока



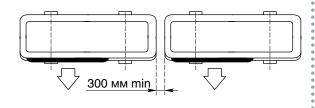
Когда воздуховыводящее отверстие открыто


Если препятствия находятся вокруг кондиционера с четырех сторон

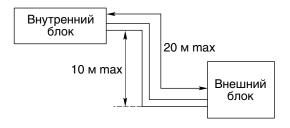
Несмотря на то, что сверху кондиционера препятствия отсутствуют, в данном случае установка кондиционера запрещена.

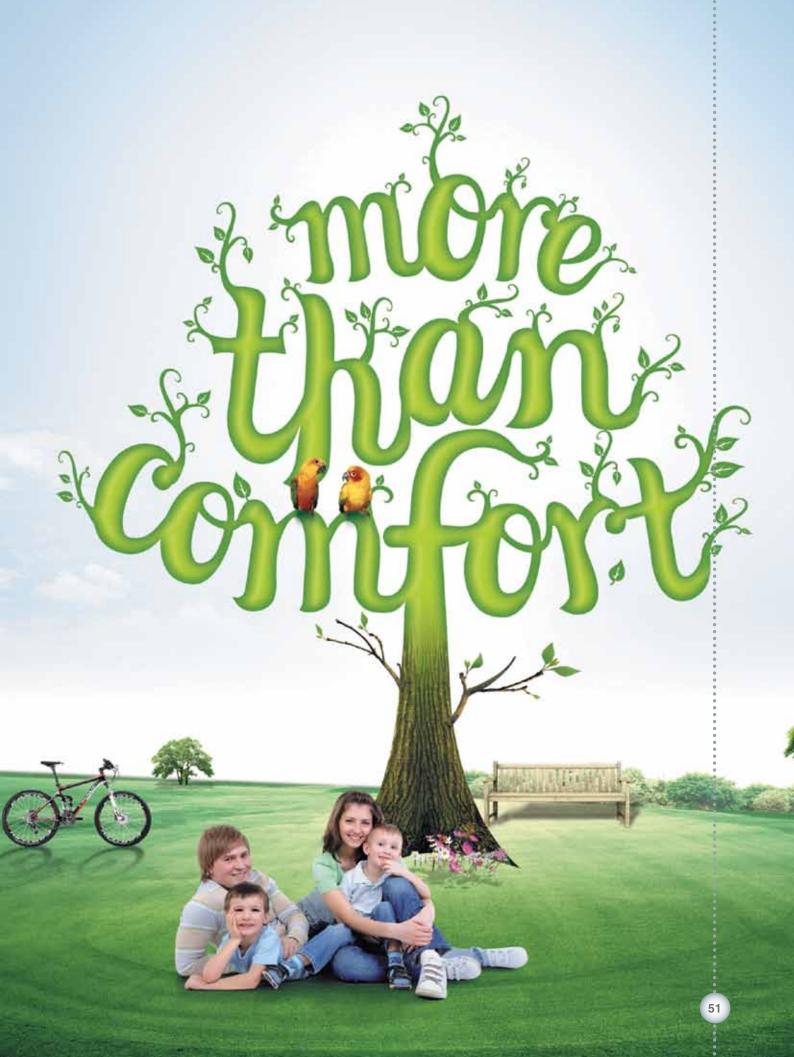

По крайней мере одна сторона должна быть открыта.

Если существуют препятствия только перед кондиционером



Пространство для сервисного обслуживания

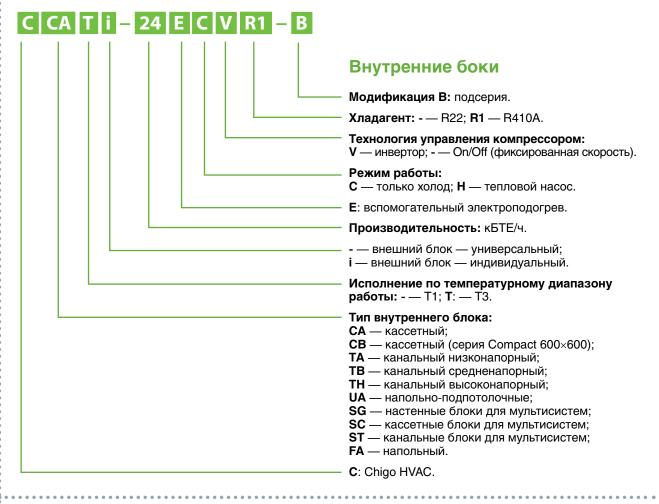

Оставьте пространство для сервисного обслуживания перед кондиционером. Руководствуйтесь данным рисунком.

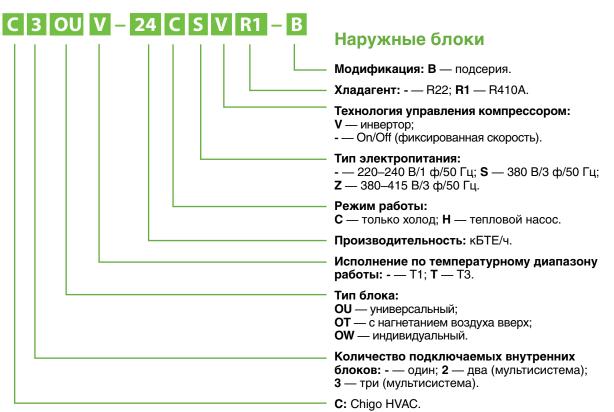

Расстояние между параллельно установленными блоками

Перепад высот при монтаже

Оборудование коммерческого назначения (on/off)

Производительность, БТЕ/ч / кВт	12000 / 3,5	18000 / 5,3	24 000 / 7,1	36 000 / 10,5	48 000 / 14,0	60 000 / 16,0
Кассетные четырехпоточные внутренние блоки (серия Compact)						
Кассетные четырехпоточные внутренние блоки						
Напольно- подпотолочные внутренние блоки						
Низконапорные канальные внутренние блоки						
Канальные средненапорные внутренние блоки						
Высоконапорные канальные внутренние блоки					MA	Uf
Универсальные наружные блоки				0		


Оборудование коммерческого назначения (DC-инвертор)


Производительность, БТЕ/ч / кВт	18000 / 5,3	24000 / 7,1	36 000 / 10,5
Кассетные четырехпоточные внутренние блоки			
Напольно- подпотолочные внутренние блоки			
Низконапорные канальные внутренние блоки			
Канальные средненапорные внутренние блоки			
Высоконапорные канальные внутренние блоки			
Универсальные наружные блоки			

Компрессорно-конденсаторные блоки (ККБ)

Производитель- ность, БТЕ/ч / кВт	18 000 / 5,3	24 000 / 7,1	36 000 / 10,5	48 000 / 14,0	60 000 / 16,0	96 000 / 28,0	150 000 / 45,0
Компрессорно- конденсаторные блоки			0	0		a	8

Маркировка полупромышленных и промышленных систем Chigo

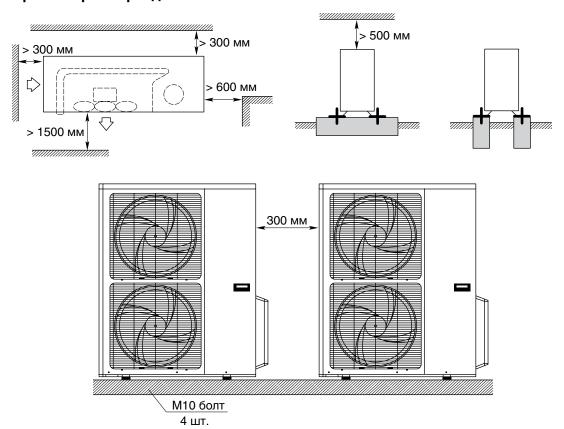
Универсальные наружные блоки полупромышленной серии (оп/оff)

Спиральные компрессоры от известных фирм-производителей: обладающие малой инертностью, высокопроизводительные и надежные. Конструкция с низким уровнем пульсаций и адаптация для работы на обогрев при низких температурах окружающей среды.

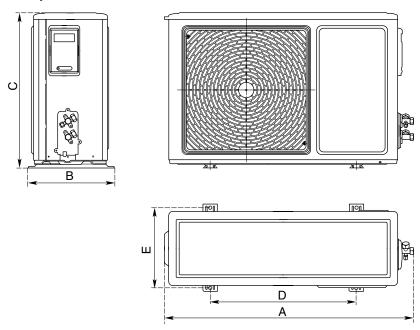
Озонобезопасный хладагент R410A.

Совершенно новый дизайн наружных блоков, удобных в монтаже и с возможностью подключения трубопроводов с разных сторон.

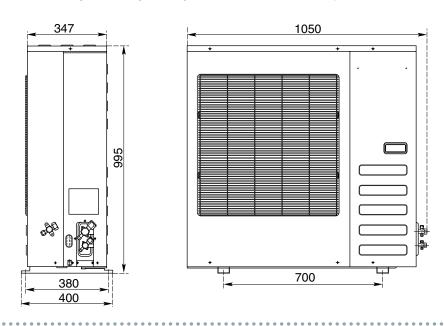
Универсальные наружные блоки (on/off)


		Модель		COU-12HR1	COU-18HR1	COU-24HR1	COU-36HR1	
Электроп	итан	ие	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50	
Охлаж- дение	Про	изводитель- гь	кВт	3,5	5,3	7,1	10,5	
		ребляемая цность	Вт	1240	1 900	2400	3710	
	Номинал		Α	5,4	8,3	10,6	16,7	
Обо- грев	Про	изводитель- гь	кВт	3,9	5,9	7,7	11,5	
		ребляемая цность	Вт	1270	1 690	2100	3310	
	Ном	инальный ток	Α	5,5	7,4	9,2	15,0	
Максимал мая мощн		я потребляе-	Вт	1 620	2500	2700	4800	
Максимальный ток		Α	8,3	12,6	13,2	21,2		
Пусковой	Пусковой ток		Α	27	40	49	112	
Компресс	Компрессор Тип			Rotary	Rotary	Rotary	Scroll	
		Производител	-	GMCC	Hitachi	Hitachi	Sanyo	
Расход вс	зду	ка	м ³ /ч	2000	2800	3800	6000	
Уровень з	вуко	вого давления	дБ(А)	55	53	58	65	
Диапазон	l	Охлаждение	°C	+18+43	+18+43	+18+43	+18+43	
рабочих температу	ур	Обогрев	°C	−7+24	-7+24	−7+24	−7+24	
Размеры	(Ш×	В×Г)	ММ	866×535×304	866×535×304	930×700×370	1070×995×400	
Размеры	упан	ковки (Ш×В×Г)	ММ	920×585×335	920×585×335	990×770×410	1 145×1 120×475	
Вес нетто	/ бр	утто	КГ	36 / 38	41 / 43	52 / 56	92 / 100	
Хладаген	Т	Тип		R410A	R410A	R410A	R410A	
		Количество	Г	1 100	1200	1 800	2100	
Максимал давление		е рабочее	МПа	4,0	4,0	4,0	4,0	
Диаметр	жиді	костной линии	ММ	Ø6,35	Ø6,35	Ø9,52	∅9,52	
Диаметр	газо	вой линии	ММ	Ø12,7	Ø12,7	Ø15,88	Ø19,05	
Максимал	тьна	я длина	М	15	20	20	20	
Максимал высот	ТЬНЬ	й перепад	М	8	10	10	10	

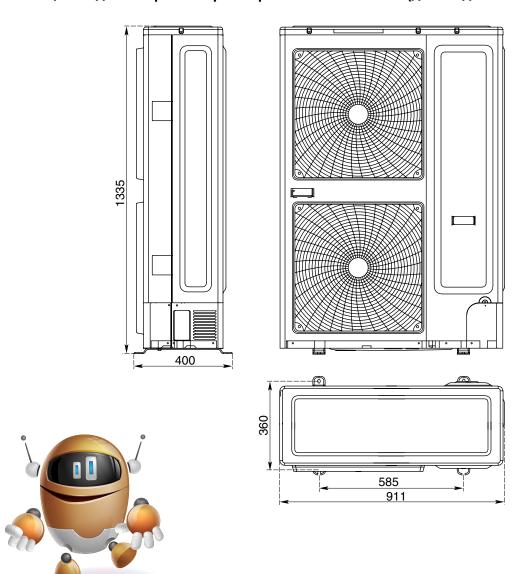
Универсальные наружные блоки (on/off) (окончание)


	Нар	ужный блок		COU-36HSR1	COU-48HSR1	COU-60HSR1
Электропитание В/ф/Гц			В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50
Охлаж- Пр		изводитель- ъ	кВт	10,5	14,0	16,0
	Потребляемая мощность		Вт	3800	5 000	5700
	Номинальный ток		Α	6,9	8,2	10,0
	Производитель-		кВт	11,5	15,2	16,0
		ребляемая цность	Вт	3600	5 100	5800
	Ном	инальный ток	Α	6,5	8,4	10,2
Максимал мая мощн		я потребляе-	Вт	4900	6 000	6600
Максимал	1ЬНЫ	й ток	Α	10,3	10,5	11,8
Пусковой	ток		Α	48	66	70
Компрессор Тип Производител			Scroll	Scroll	Scroll	
		ь	Sanyo	Sanyo	Sanyo	
Расход воздуха м ³ /ч		м ³ /ч	6000	6100	6100	
Уровень зв	вукої	вого давления	дБ(А)	65	60	60
Диапазон		Охлаждение	°C	+18+43	+18+43	+18+43
рабочих то ператур	Обогрев		°C	−7+24	−7+24	−7+24
Размеры ((Ш×Е	3×Г)	ММ	1070×995×400	911×1335×400	911×1335x400
Размеры у	упак	овки (Ш×В×Г)	ММ	1 145×1 120×475	964×1 445×475	964×1 445×475
Вес нетто	/бру	тто	КГ	92/100	99/110	99/110
Хладагент	Т	Тип		R410A	R410A	R410A
		Количество	Г	2100	3600	4000
Максимальное рабочее мПа давление		МПа	4,5	4,5	4,9	
Диаметр >	жидк	остной линии	ММ	Ø9,52	Ø9,52	Ø9,52
Диаметр г	газов	зой линии	ММ	Ø19,05	Ø19,05	Ø19,05
Максимал	тьная	я длина	М	20	20	20
Максимальный перепад высот		М	10	10	10	

Габаритные размеры для монтажа



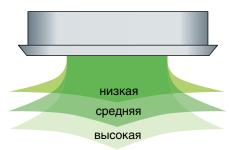
Габаритные размеры



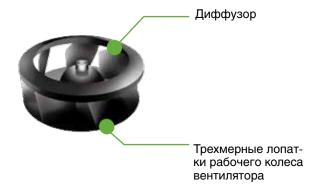
Модель	А, мм	В, мм	С, мм	D, мм	Е, мм
3,5 кВт, 5,3 кВт	866	305	535	510	280
7,1 кВт	930	370	700	590	360

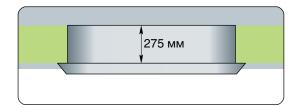
Общий вид и габаритные размеры внешнего блока (для моделей серии 36)

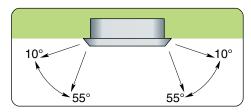
Общий вид и габаритные размеры внешнего блока (для моделей серии 48-60)

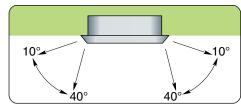


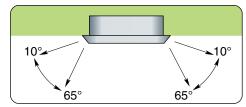
Компактная конструкция блока позволяет монтировать его в стандартный модуль подвесного потолка 600×600 мм.


Четырехпоточная подача позволяет равномерно распределять воздух по всему объему помещения, обеспечивая высокий уровень комфорта.


Три скорости вращения двигателя вентилятора.


Особая форма рабочего колеса вентилятора позволила обеспечить низкий уровень шума и высокую эффективность.


Высота ультратонкого корпуса составляет всего 275 мм, что позволяет сэкономить пространство.

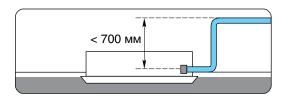

Система управления направлением потока воздуха предотвращает загрязнение потолка и попадание холодных потоков на человека.

Стандартный диапазон качания

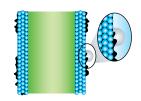
Предотвращение попадания холодных потоков

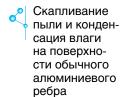
Предотвращение загрязнения потолка

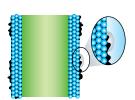
Специальный дизайн для легкого и удобного монтажа и обслуживания.



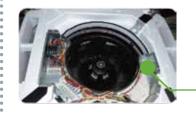
Фильтр легко снимается с панели




Моющийся фильтр


Встроенный дренажный насос с высотой подъема до 700 мм.

Специальное гидрофильное покрытие ребер теплообменника делает его устойчивым к загрязнению, что позволяет экономить электроэнергию и положительно сказывается на самочувствии людей.

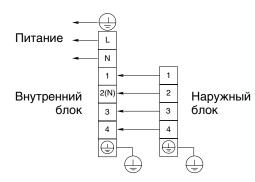


Гидрофильное покрытие ребра приводит к выпадению мелкодисперсных капель конденсата и тем самым способствует удалению пыли

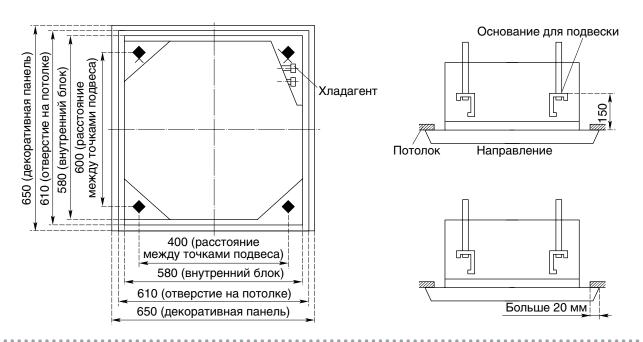
Вся электрика блока убрана в металлический бокс.

Металлический бокс

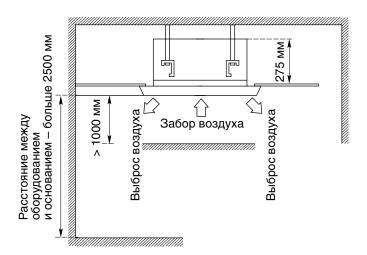
Встроены функции защиты и автоматического перезапуска.

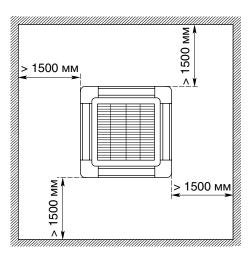


Четырехпоточные кассетные внутренние блоки (серия Compact)


			000 401104	000 4000	
Модель внутреннего блока			CCB-12HR1	CCB-18HR1	
Модель внешнего блока			COU-12HR1	COU-18HR1	
Декоративная панель			SP-S044L	SP-S044L	
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	
Охлажде-	Производительность	кВт	3,5	5,3	
ние	Потребляемая мощность	Вт	75	75	
	Номинальный ток	Α	0,4	0,4	
	EER	_	2,66	2,68	
Обогрев	Производительность	кВт	3,9	5,9	
	Потребляемая мощность	Вт	75	75	
	Номинальный ток	Α	0,4	0,4	
	COP	_	2,88	3,34	
Производительность внутреннего блока по воздуху		м ³ /ч	566	700	
Уровень зву	кового давления	дБ(А)	40–45	43–48	
Размеры	Копус	ММ	580×275×580	580×275×580	
(Ш×В×Г)	Панель	ММ	650×30×650	650×30×650	
Размеры	Корпус	ММ	745×375×675	745×375×675	
упаковки (Ш×В×Г)	Панель	ММ	750×95×750	750×95×750	
Вес нетто/	Корпус	КГ	25/27	25/27	
брутто	Панель	КГ	2,7/4,0	2,7/4,0	
Хладагент		Тип	R410A	R410A	
Диаметр жидкостной линии		ММ	Ø6,35	Ø6,35	
Диаметр газовой линии		ММ	Ø12,7	Ø12,7	
Диаметр дренажа		ММ	DN25	DN25	
Пульт дистанционного управления в комплекте			Беспрово,	дной пульт	
, III I , I					

Электрические схемы подключения

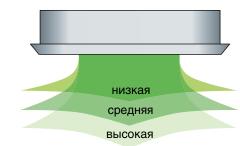

CCB-12HR1&COU-12HR1 CCB-18HR1&COU-18HR1



Габаритные размеры

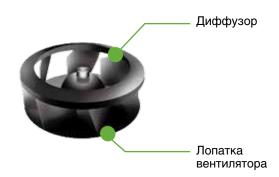
Пространство для монтажа

Совершенно новый дизайн панели.

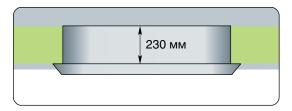

Простой, изящный и стильный внешний вид легко вписывается в интерьер самых различных помещений: офисы, торговые центры, рестораны, конференц-залы и т.д.

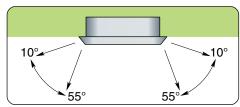
950 мм

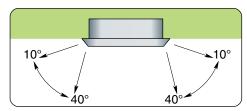
Четырехпоточная подача позволяет равномерно распределять воздух по всему объему помещения, обеспечивая высокий уровень комфорта.

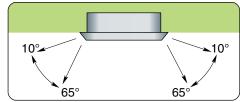


Три скорости вращения двигателя вентилятора.




Особая форма рабочего колеса вентилятора позволяет обеспечить низкий уровень шума и высокую эффективность.


Высота ультратонкого корпуса составляет всего 230 мм, что позволяет сэкономить пространство.


Система управления направлением потока воздуха, предотвращает загрязнение потолка и попадание холодных потоков на человека.

Стандартный диапазон качания

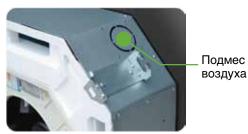


Предотвращение попадания холодных потоков

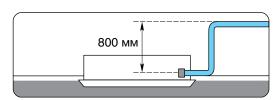
Предотвращение загрязнения потолка

Специальный дизайн для легкого и удобного монтажа и обслуживания.

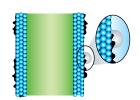
Фильтр легко снимается с панели

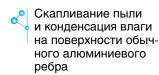

Моющийся фильтр

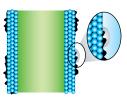
Вся электрика блока убрана в металлический бокс.


Встроены функции защиты и автоматического перезапуска.

Подмес свежего воздуха.




Подмес свежего


Встроенный дренажный насос с высотой подъема до 800 мм.

Специальное гидрофильное покрытие ребер теплообменника делает его устойчивым к загрязнению, что позволяет экономить электроэнергию и положительно сказывается на самочувствии людей.

Гидрофильное покрытие ребра приводит к выпадению мелкодисперсных капель конденсата и тем самым способствует удалению пыли

Четырехпоточные кассетные внутренние блоки

Модель внутреннего блока			CCA-18HR1	CCA-24HR1
Модель внешнего блока			COU-18HR1	COU-24HR1
Декоративная панель			SP-S046L	SP-S046L
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50
Охлажде-	Производительность	кВт	5,3	7,1
ние	Потребляемая мощность	Вт	65	150
	Номинальный ток	Α	0,4	0,7
	EER	_	2,70	2,78
Обогрев	Производительность	кВт	5,9	7,7
	Потребляемая мощность	Вт	65	150
	Номинальный ток	Α	0,4	0,7
	COP	_	3,31	3,42
Производительность по воздуху		м ³ /ч	810	1200
Уровень зву	кового давления	дБ(А)	38–45	44–48
Размеры	Копус	ММ	840×230×840	840×230×840
(Д×В×Г)	Панель	ММ	950×50×950	950×50×950
Размеры	Корпус	ММ	920×265×920	920×265×920
упаковки (Д×В×Г)	Панель	ММ	1 030×105×1 030	1030×105×1030
Вес нетто/	Корпус	КГ	24/29	24/29
брутто	Панель	КГ	5,4/8,0	5,4/8,0
Хладагент		Тип	R410A	R410A
Диаметры х	кидкостной линии	ММ	Ø6,35	Ø9,52
Диаметр газовой линии		ММ	Ø12,7	Ø15,88
Диаметр дренажа		ММ	DN25	DN25
Пульт дистанционного управления в комплекте			Беспрово	дной пульт

Электрические схемы подключения

CCA-18HR1&COU-18HR1

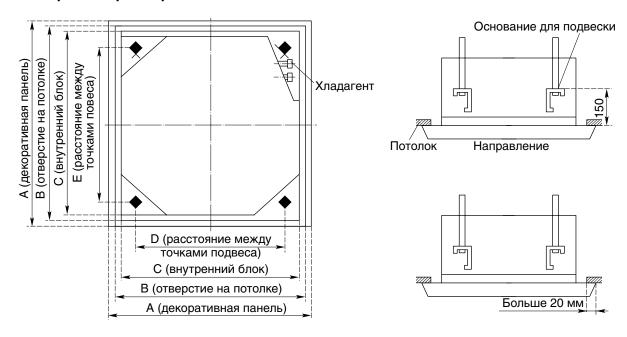
CCA-24HR1&COU-24HR1

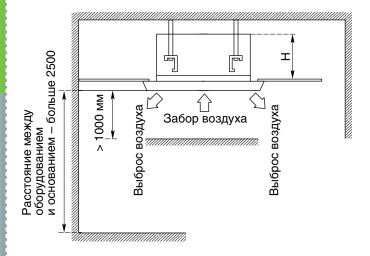
Четырехпоточные кассетные внутренние блоки (окончание)

			004 001104	004 401104	004 001104
Модель внутреннего блока			CCA-36HR1	CCA-48HR1	CCA-60HR1
Модель внешнего блока			COU-36H(S)R1	COU-48HSR1	COU-60HSR1
Декоративная панель			SP-S046L	SP-S046L	SP-S046L
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Охлажде-	Производительность	кВт	10,5	14,0	16,0
ние	Потребляемая мощность	Вт	160	180	180
	Номинальный ток	Α	0,8	0,8	0,8
	EER	_	2,71	2,70	2,72
Обогрев	Производительность	кВт	11,5	15,2	16,0
	Потребляемая мощность	Вт	160	180	180
	Номинальный ток	Α	0,8	0,8	0,8
	COP	_	3,31	2,88	2,68
Производительность по воздуху м³/ч		М ³ /Ч	1 700	1 900	1 900
Уровень зву	укового давления	дБ(А)	44–48	45–52	45–52
Размеры	Копус	ММ	840×285×840	840×285×840	840×285×840
(Д×В×Ш)	Панель	ММ	950×50×950	950×50×950	950×50×950
Размеры	Корпус	ММ	920×310×920	920×310×920	920×310×920
упаковки (Д×В×Ш)	Панель	ММ	1 030×105×1 030	1030×105×1030	1 030×105×1 030
Вес нетто/	Корпус	КГ	28,0/33,5	28,0/33,5	30,5/36,0
брутто	брутто Панель		5,4/8,0	5,4/8,0	5,4/8,0
Хладагент Тип		Тип	R410A	R410A	R410A
Диаметр жи	Диаметр жидкостной линии мм		Ø9,52	Ø9,52	Ø9,52
Диаметр га	Диаметр газовой линии мм		Ø19,05	Ø19,05	Ø19,05
Диаметр дренажа мм		ММ	DN25	DN25	DN25
Пульт дистанционного управления в комплекте		Беспроводной пульт			
_		DN25			

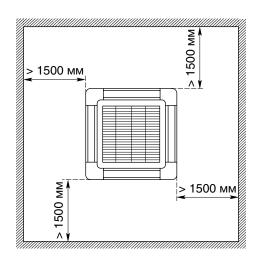
Электрические схемы подключения

CCA-36HR1&COU-36HR1





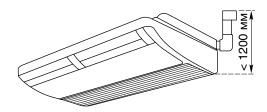
Габаритные размеры



Модель	А, см	В, см	С, см	D, см	Е, см
5,3 кВт, 7,1 кВт	950	890	840	680	780
10,5 кВт, 14,0 кВт, 16,0 кВт	950	890	840	680	780

Пространство для монтажа

Модель	Н, мм
5,3 кВт, 7,1 кВт	230
10,5 кВт, 14,0 кВт, 16,0 кВт	285


Гибкость монтажа: возможна установка под потолком или у пола.

Функция автоматического качания заслонок: наличие привода как горизонтальных, так и вертикальных жалюзи.

Встраиваемый дренажный насос с высотой подъема до 1200 мм (опция).

Моющийся воздушный фильтр.

Изоляция дренажного поддона позволяет избежать нежелательной конденсации на его внешней поверхности.

Встроенные функции защиты и самодиагностики.

Функция автоматического перезапуска.

Напольно-подпотолочные внутренние блоки

Модель внутреннего блока			CUA-18HR1	CUA-24HR1
Модель внешнего блока			COU-18HR1	COU-24HR1
Электроп	итание	В/ф/Гц	220~240/1/50	220~240/1/50
Охлаж-	Производительность	кВт	5,3	7,1
дение	Потребляемая мощность	Вт	130	150
	Номинальный ток	Α	0,3	0,7
	EER	_	2,61	2,78
Обогрев	Производительность	кВт	5,9	7,7
	Потребляемая мощность	Вт	130	150
	Номинальный ток	Α	0,3	0,68
	COP	_	3,24	3,42
Производительность по воздуху		м³/ч	790	1 300
Уровень з	ввукового давления	дБ(А)	44–52	39–48
Размеры	(Д×В×Г)	ММ	880×635×203	1245×680×247
Размеры	упаковки (Д×В×Г)	ММ	970×725×300	1 325×770×330
Вес нетто	/брутто	КГ	30/35	35/41
Хладаген	Т	Тип	R410A	R410A
Диаметр жидкостной линии		ММ	Ø6,35	Ø9,52
Диаметр газовой линии		ММ	Ø12,7	Ø15,88
Диаметр дренажа		ММ	DN25	DN25
Пульт дистанционного управления в комплекте			Беспрово	дной пульт

Электрические схемы подключения

CUA-18HR1&COU-18HR1

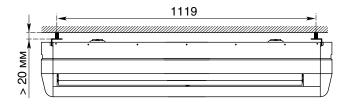
CCA-24HR1&COU-24HR1

Напольно-подпотолочные внутренние блоки (окончание)

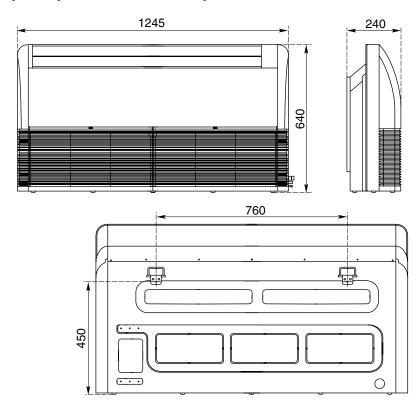
IV	одель внутреннего блока		CUA-36HR1	CUA-48HR1	CUA-60HR1	
	Модель внешнего блока		COU-36H(S)R1	COU-48HSR1	COU-60HSR1	
Электропи	тание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	
Охлажде-	Производительность	кВт	10,5	14,0	16,0	
ние	Потребляемая мощность	Вт	300	260	260	
	Номинальный ток	Α	1,4	1,15	1,15	
	EER	_	2,62	2,66	2,68	
Обогрев	Производительность	кВт	11,5	15,2	16,0	
	Потребляемая мощность	Вт	300	260	260	
	Номинальный ток	Α	1,4	1,15	1,15	
	COP	_	3,19	2,84	2,64	
Производи	тельность по воздуху	м ³ /ч	1700	2300	2300	
Уровень зв	вукового давления	дБ(А)	44–52	48–57	48–57	
Размеры (I	Ш×В×Г)	ММ	1245×680×247	1670×680×247	1670×680×247	
Размеры у	паковки (Ш×В×Г)	ММ	1325×770×330	1750×770×330	1750×770×330	
Вес нетто/	брутто	КГ	37/43	47/54	47/54	
Хладагент		Тип	R410A	R410A	R410A	
Диаметр ж	идкостной линии	ММ	∅9,52	Ø9,52	Ø9,52	
Диаметр га	азовой линии	ММ	Ø19,05	Ø19,05	Ø19,05	
Диаметр д	ренажа	ММ	DN25	DN25	DN25	
Пульт дист	анционного управления в ком	иплекте	Беспроводной пульт			

Электрические схемы подключения

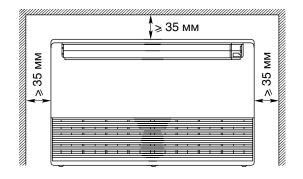
CUA-36HR1&COU-36HR1

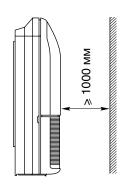






Габаритные размеры. Монтаж на потолок



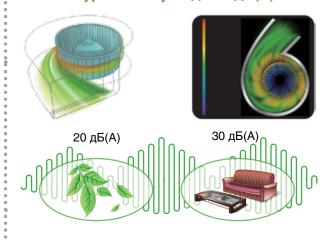


Габаритные размеры. Монтаж на стену

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм
5,3 кВт	880	635	247	520	450	759	200
7,1 кВт	1245	680	247	520	450	759	200
10,5 кВт	1 245	680	247	760	450	1119	200
14,0 кВт, 16,0 кВт	1670	680	247	1 070	450	1 542	200

Низконапорные канальные внутренние блоки

Ультратонкий корпус.


Три скорости вращения вентилятора.

Удобный доступ к блоку электрических подсоединений при монтаже и сервисе.

Применение авиационных технологий при проектировании центробежных вентиляторов для низконапорных канальных внутренних блоков позволило увеличить расход воздуха и при этом снизить уровень шума до 29 дБ(A).

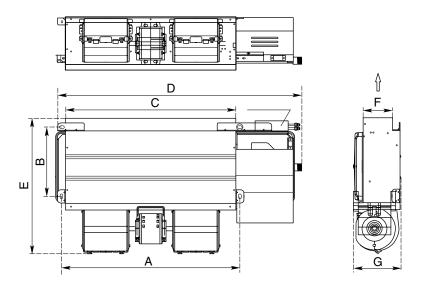
Встроены функции защиты и автоматического перезапуска.

Низконапорные канальные внутренние блоки

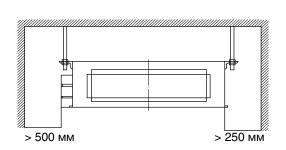
М	одель внутреннего блока		CTA-18HR1	CTA-24HR1	
	Модель внешнего блока		COU-18HR1	COU-24HR1	
Электропи	тание	В/ф/Гц	220~240/1/50	220~240/1/50	
Охлажде-	Производительность	кВт	5,3	7,1	
ние	Потребляемая мощность	Вт	70	150	
	Номинальный ток	Α	0,4	0,7	
	EER	Вт/Вт	2,69	2,78	
Обогрев	Производительность	кВт	5,9	7,7	
	Потребляемая мощность	Вт	70	150	
	Номинальный ток	Α	0,4	0,7	
	COP	_	3,35	3,42	
Производи	тельность по воздуху	м ³ /ч	730	1 150	
Свободный	і́ статический напор	Па	0~20	0~20	
Уровень зв	укового давления	дБ(А)	37–46	38–48	
Размеры (L	Ш×В×Г)	ММ	1204×181×510	1532×181×510	
Размеры у	паковки (Ш×В×Г)	ММ	1310×250×645	1 625×250×645	
Вес нетто/б	брутто	КГ	20/24	24/27,5	
Хладагент		Тип	R410A	R410A	
Диаметры	жидкостной линии	ММ	Ø6,35	Ø9,52	
Диаметр га	азовой линии	ММ	Ø12,7	Ø15,88	
Диаметр д	ренажа	ММ	DN25	DN25	
Пульт диста	анционного управления в ком	иплекте	Проводной пульт управления		

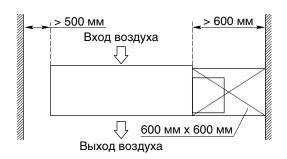
Электрические схемы подключения

CTA-18HR1&COU-18HR1



CTA-24HR1&COU-24HR1





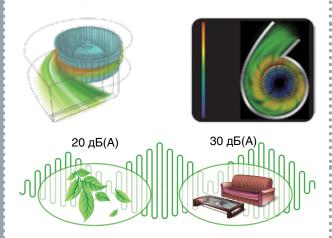
Общий вид и габаритные размеры внутреннего блока (для моделей с низким внешним статическим давлением — серия ТА)

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм
5,3 кВт	951	261	921	1204	510	112	181
7,1 кВт	1274	261	1 244	1 532	510	112	181

Средненапорные канальные внутренние блоки

Опция

Стандартный ПДУ


Ультратонкий корпус.

Удобный доступ к блоку электрических подсоединений.

Применение авиационных технологий при проектировании центробежных вентиляторов для средненапорных канальных внутренних блоков позволило увеличить расход воздуха и при этом снизить уровень шума.

Встроены функции защиты и автоматического перезапуска.

Воздушный фильтр можно легко снимать для очистки при проведении технического обслуживания.

Три скорости вращения вентилятора.

Внешний статический напор 50 Па позволяет удачно решать проблему кондиционирования помещений различной формы.

Средненапорные канальные внутренние блоки

					,	
Мо	дель внутреннего блока		CTB-18HR1-B	CTB-24HR1	CTB-36HR1	
IV	Іодель внешнего блока		COU-18HR1-B	COU-24HR1	COU-36H(S)R1	
Электропитан	ние	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	
Охлаждение	Производительность	кВт	5,3	7,1	10,5	
	Потребляемая мощность	Вт	250	250	300	
	Номинальный ток	Α	1,1	1,1	1,4	
	EER	_	2,47	2,68	2,56	
Обогрев	Производительность	кВт	5,9	7,7	11,5	
	Потребляемая мощность	Вт	250	250	300	
	Номинальный ток	Α	1,1	1,1	1,4	
	COP	_	3,04	3,28	3,18	
Производител	ъность по воздуху	м ³ /ч	900	1 200	1 900	
Свободный с	гатический напор	Па	30–70	30–70	30–70	
Уровень звук	ового давления	дБ(А)	40–48	40–48	40–50	
Размеры (Ш×	В×Г)	ММ	1 189×260×643	1 189×260×643	1 425×260×643	
Размеры упан	ковки (Ш×В×Г)	ММ	1255×325×720	1255×325×700	1 490×325×720	
Вес нетто/бру	/TTO	КГ	33/36	33/37	44/48	
Хладагент		Тип	R410A	R410A	R410A	
Диаметр жид	костной линии	ММ	Ø6,35	Ø9,52	Ø9,52	
Диаметр газо	вой линии	ММ	Ø12,70	Ø15,88	Ø19,05	
Диаметр дренажа мм		ММ	DN25	DN25	DN25	
Пульт дистань	ционного управления в комп	пекте	Проводной пульт управления			

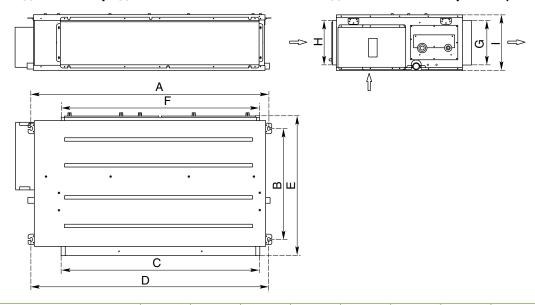
Электрические схемы подключения

CTB-18HR1&COU-18HR1

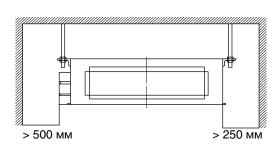
CTB-24HR1&COU-24HR1 CTB-36HR1&COU-36HR1

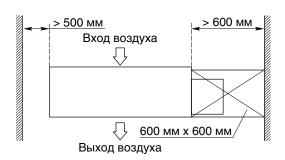
CTB-36HR1&COU-36HSR1

Средненапорные канальные внутренние блоки (окончание)


Мо	дель внутреннего блока		CTB-48HR1	CTB-60HR1	
М	одель внешнего блока		COU-48HSR1	COU-60HSR1	
Электропитан	ие	В/ф/Гц	220~240/1/50	220~240/1/50	
Охлаждение	Производительность	кВт	14,0	16,0	
	Потребляемая мощность	Вт	340	340	
	Номинальный ток	Α	1,6	1,6	
	EER	_	2,62	2,65	
Обогрев	Производительность	кВт	15,2	16,0	
	Потребляемая мощность	Вт	340	340	
	Номинальный ток	Α	1,60	1,60	
	COP	_	2,79	2,61	
Производител	ъность по воздуху	м ³ /ч	2000	2000	
Свободный ст	атический напор	Па	30~70	30~70	
Уровень звуко	ового давления	дБ(А)	40–50	40–50	
Размеры (Ш×	B×Γ)	ММ	1 425×260×643	1 425×260×643	
Размеры упак	ковки (Ш×В×Г)	ММ	1 490×325×720	1490×325×720	
Вес нетто/бру	тто	КГ	44/48	44/48	
Хладагент		Тип	R410A	R410A	
Диаметры жи	дкостной линии	ММ	Ø9,52	Ø9,52	
Диаметр газо	вой линии	ММ	Ø19,05	Ø19,05	
Диаметр дрен	ажа	ММ	DN25	DN25	
Пульт дистанц	ионного управления в компл	текте	Проводной пульт управления		

Электрические схемы подключения

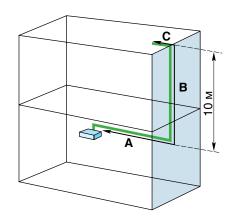

CTB-48HR1&COU-48HSR1 CTB-60HR1&COU-60HSR1



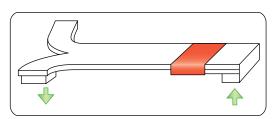
Общий вид и габаритные размеры внутреннего блока (для моделей со средним внешним статическим давлением — серия ТВ)

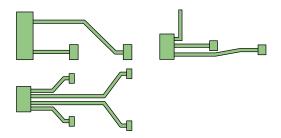
Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм	Н, мм	І, мм
5,3 кВт, 7,1 кВт	1189	515	920	1100	643	920	207	207	260
10,5 кВт, 14,0 кВт, 16,0 кВт	1425	515	1155	1337	643	1155	207	207	260

Высоконапорные канальные внутренние блоки


Опция

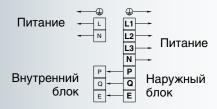
Стандартный ПДУ


Центробежный вентилятор — низкий уровень шума и большой расход воздуха.



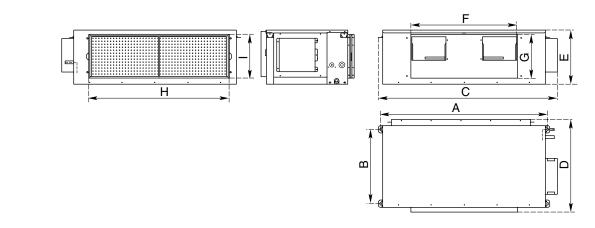
Максимальная длина фреонопроводов между внутренним и наружным блоками составляет 20 м. Максимальный перепад высот — 10 м.

Высокий статический напор в 120 Па позволяет использовать сложные системы воздуховодов.

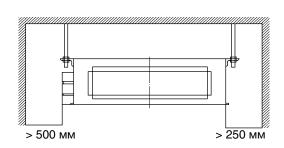

Стандартно комплектуется проводным пультом дистанционного управления; беспроводной пульт ДУ — опция.

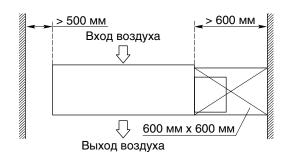
Высоконапорные канальные внутренние блоки

Mo	дель внутреннего блока		CTH-48HR1	CTH-60HR1
IN	Подель внешнего блока		COU-48HSR1	COU-60HSR1
Электропитан	ие	В/ф/Гц	220~240/1/50	220~240/1/50
Охлаждение	Производительность	кВт	14,0	16,0
	Потребляемая мощность	Вт	500	500
	Номинальный ток	Α	2,3	2,3
	EER	_	2,55	2,58
Обогрев	Производительность	кВт	15,2	16,0
	Потребляемая мощность	Вт	500	500
	Номинальный ток	Α	2,3	2,3
	COP	_	2,71	2,54
Производител	пьность по воздуху	м³/ч	2300/	2300
Свободный ст	гатический напор	Па	120	120
Уровень звук	ового давления	дБ(А)	44–52	44–52
Размеры (Ш×	В×Г)	ММ	1175×370×625	1 175×370×625
Размеры упан	ковки (Ш×В×Г)	ММ	1245×445×655	1245×445×655
Вес нетто/бру	TTO	КГ	45/49	45/49
Хладагент		Тип	R410A	R410A
Диаметр жид	костной линии	ММ	Ø9,52	Ø9,52
Диаметр газо	вой линии	ММ	Ø19,05	Ø19,05
Диаметр дрен	нажа	ММ	DN25	DN25
Пульт дистань	ционного управления в компл	екте	Проводной пу	пьт управления


Электрическая схема подключения

CTH-48HR1&COU-48HSR1 CTH-60HR1&COU-60HSR1





Общий вид и габаритные размеры внутреннего блока (для моделей с высоким внешним статическим давлением — серия TH 48–60)

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм	Н, мм	I, мм
14,0 кВт, 16,0 кВт	1120	500	1 175	625	370	713	295	938	294

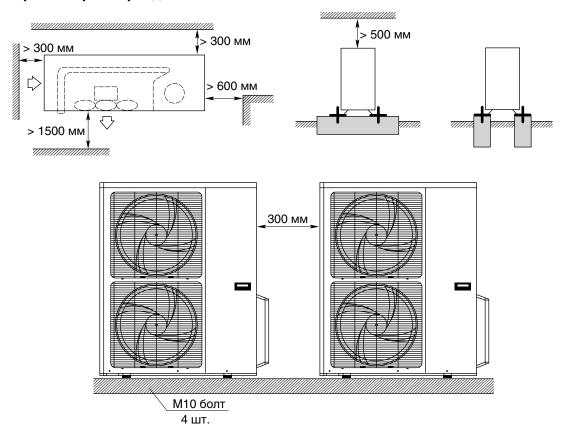
Высокоэффективный DC-инверторный компрессор.

Высокоэффективный DC-инверторный двигатель вентилятора— низкий уровень шума.

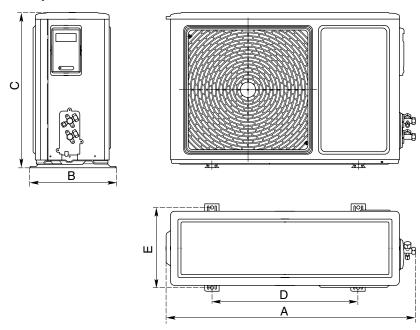
Совершенно новый дизайн наружных блоков, удобных в монтаже и с возможностью подключения трубопроводов с разных сторон.

Широкий диапазон работы температур по наружному воздуху.

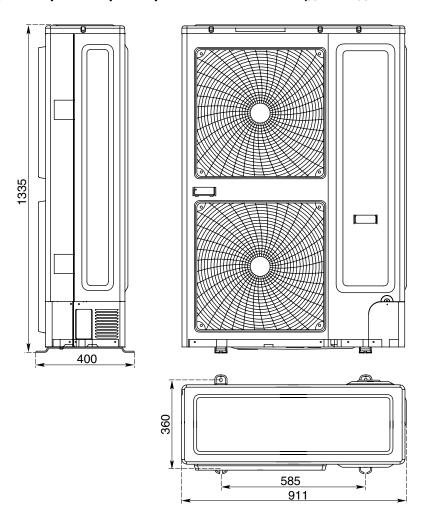
Низкое электропотребление в режиме ожидания — всего 0,5 Вт.

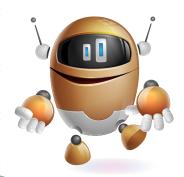


Универсальные наружные блоки (DC-инвертор)


	Нар	ужный блок		COU-18HDR1	COU-24HDR1	COU-36HDR1
Электро	питан	ие	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Охлаж- дение	Про	изводитель- гь	кВт	5,3 (2,0–5,6)	7,0 (3,5–8,0)	10,5 (6,6–12,8)
		ребляемая цность	Вт	330–1750	540–2940	950–4560
	Ном	іинальный ток	Α	1,2–7,2	2,2–12,7	3,5–24,0
Обо- грев	Про	изводитель- гь	кВт	5,3 (3,0–6,0)	7,0 (4,5–8,5)	10,5 (7,35–13,2)
		ребляемая цность	Вт	550–1550	1 440–2 540	1 000–4 050
	Ном	іинальный ток	Α	2,4–7,0	5,2–10,7	3,7–17,8
Компрес	ссор	Тип		Инвеј	орный	
Производител		Ь	GMCC	Mitsubishi	Mitsubishi	
Расход в	воздух	ка	м ³ /ч	4000	5000	7000
Уровень	звуко	вого давления	дБ(А)	63	67	68
Диапазо		Охлаждение	°C	- 5+50	-5+50	-5+50
рабочих темпера		Обогрев	°C	-15+30	-15+30	-15+30
Размерь	ы (Ш×І	B×Γ)	ММ	930×370×700	960×390×835	911×400×1335
Размерь	ы упак	ковки (Ш×В×Г)	ММ	990×410×770	1 025×430×880	964×402×1 445
Вес нетт	го/бру	тто	КГ	45/49	59/69	96/101
Хладаге	нт	Тип		R410A	R410A	R410A
		Количество	Г	1800	2400	4400
Диаметр	жиді	остной линии	ММ	Ø6,35	∅9,52	∅9,52
Диаметр	газо	вой линии	ММ	Ø12,7	Ø15,88	Ø15,88
Максима	альна	я длина	М	20	20	20
Максимальный перепад высот		М	10	10	10	

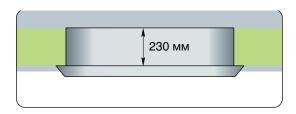
Габаритные размеры для монтажа




Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм
5,3 кВт	930	370	700	590	334
7,1 кВт	960	390	835	600	360

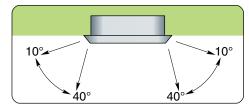
Общий вид и габаритные размеры внешнего блока (для моделей серии 36)

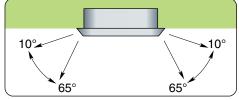

Четырехпоточная подача позволяет равномерно распределять воздух по всему объему помещения, обеспечивая высокий уровень комфорта.

Три скорости вращения двигателя вентилятора.

Высота ультратонкого корпуса составляет всего 230 мм, что позволяет сэкономить пространство.

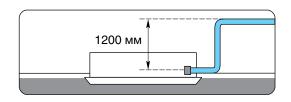
Особая форма рабочего колеса вентилятора позволяет обеспечить низкий уровень шума и высокую эффективность.


Вся электрика блока убрана в металлический бокс.


Система управления направлением потока воздуха, предотвращает загрязнение потолка и попадание холодных потоков на человека.

Стандартный диапазон качания

Предотвращение попадания холодных потоков



Предотвращение загрязнения потолка

ОС-инверторный двигатель вентилятора внутреннего блока — возможна работа на сверхмалых скоростях и точное поддержание температуры.

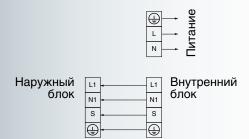
Встроенный дренажный насос с высотой подъема до 1 200 мм.

Подмес свежего воздуха.

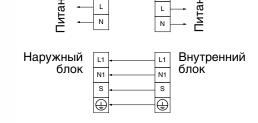
Специальный дизайн для легкого и удобного монтажа и обслуживания.

Возможна подача свежего воздуха через специально подготовленное отверстие в корпусе блока.

Предусмотрена возможность подключения к блоку дополнительных воздуховодов для подачи воздуха в соседнее помещение.

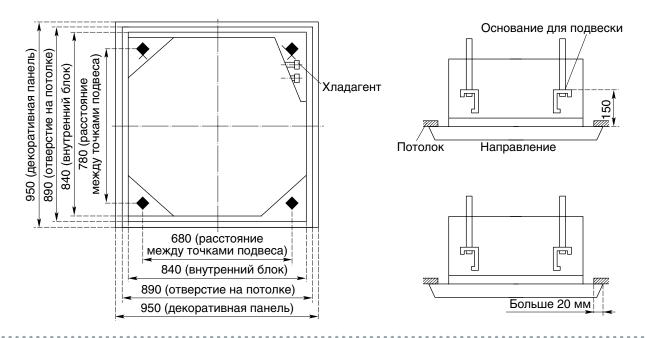


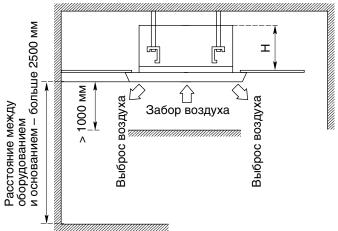
Четырехпоточные кассетные внутренние блоки (DC-инвертор)

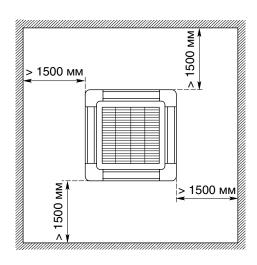

				l .		
Mo	одель внутреннего блока		CCA-18HVR1	CCA-24HVR1	CCA-36HVR1	
N	Лодель внешнего блока		COU-18HDR1	COU-24HDR1	COU-36HDR1	
Декоративн	ная панель		SP-S046D	SP-S046D	SP-S046D	
Электропит	гание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	
Охлажде- ние	Производительность	кВт	5,3 (2,0–5,6)	7,0 (3,5–8,0)	10,5 (6,6–12,8)	
	Потребляемая мощность	Вт	420–1840	600–3000	1 050-4 600	
	Номинальный ток	Α	1,8–7,8	2,5–13,0	4,2–24,8	
	EER	_	5,6	5,6	5,1	
Обогрев	Производительность	кВт	5,3 (3,0–6,0)	7,0 (4,5–8,5)	10,5 (7,35–13,2)	
_	Потребляемая мощность	Вт	640–1640	1500–2600	1 100–4 150	
	Номинальный ток	Α	3–8,0	5,5–11,0	4,4–18,5	
	COP	_	4,0	4,0	3,8	
Производи	тельность по воздуху	м ³ /ч	900	1 100	1800	
Уровень зв	укового давления	дБ(А)	46~58	56~63	53~61	
Размеры	Копус	ММ	840×840×230	840×840×230	840×840×285	
(Д×В×Ш)	Панель	ММ	950×950×50	950×950×50	950×950×50	
Размеры	Корпус	ММ	985×920×265	985×920×265	920×920×310	
упаковки (Д×В×Ш)	Панель	ММ	1 030×1 030×105	1 030×1 030×105	1 030×1 030×105	
Вес нетто/	Корпус	КГ	25/30	24/30	30,5/36,0	
брутто	Панель	КГ	5,4/8,0	5,4/8,0	5,4/8,0	
Хладагент		Тип	R410A	R410A	R410A	
Диаметр ж	идкостной линии	ММ	Ø6,35	Ø9,52	∅9,52	
Диаметр га	зовой линии	ММ	Ø12,7	Ø15,88	Ø15,88	
Диаметр др	ренажа	ММ	DN25	DN25	DN25	
Пульт диста	анционного управления в ког	иплекте	Беспроводной пульт			

Электрические схемы подключения

CCA-18HVR1&COU-18HDR1; CCA-24HVR1&COU-24HDR1



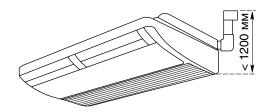

CCA-36HVR1&COU-36HDR1



Габаритные размеры

Напольно-подпотолочные внутренние блоки (DC-инвертор)

Гибкость монтажа: возможна установка под потолком или у пола.


Функция автоматического качания заслонок: наличие привода как горизонтальных, так и вертикальных жалюзи.

Функция автоматического перезапуска.

Встраиваемый дренажный насос с высотой подъема до 1200 мм (опция).

Моющийся воздушный фильтр.

ОС-инверторный двигатель вентилятора внутреннего блока — возможна работа на сверхмалых скоростях и точное поддержание температуры.

Удобные новые верхние и нижние крепления позволили упростить доступ к вентилятору.

Напольно-подпотолочные внутренние блоки (DC-инвертор)

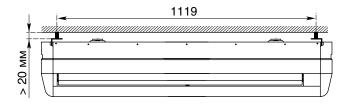
одель внутреннего блока				
одель внутреннего олока		CUA-18HVR1	CUA-24HVR1	CUA-36HVR1
Лодель внешнего блока		COU-18HDR1	COU-24HDR1	COU-36HDR1
ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Производительность	кВт	5,3 (2,0–5,6)	7,0 (3,5–8,0)	10,5 (6,6–12,8)
Потребляемая мощность	Вт	420–1840	600–3000	1 050-4 660
Номинальный ток	Α	1,8–7,8	2,5–13	4,2–24,8
EER	_	5,6	5,6	5,6
Производительность	кВт	5,3 (3,0–6,0)	7,0 (4,5–8,5)	10,5 (7,35–13,2)
Потребляемая мощность	Вт	640–1 640	1500–2600	1 100–4 150
Номинальный ток	Α	3–8,0	5,5–11	4,4–18,5
COP	_	4,0	4,0	3,8
ельность по воздуху	м ³ /ч	900	1 150	1800
кового давления	дБ(А)	46~58	53~60	55~65
J×B×Γ)	ММ	1245×680×240	1245×680×240	1245×680×240
аковки (Ш×В×Г)	ММ	1325×770×330	1 325×770×330	1325×770×330
рутто	КГ	34/40	34/40	35/41
	Тип	R410A	R410A	R410A
ідкостной линии	ММ	Ø6,35	Ø9,52	∅9,52
зовой линии	ММ	Ø12,7	Ø15,88	Ø15,88
енажа	ММ	DN25	DN25	DN25
нционного управления в ком	онного управления в комплекте Беспроводной пульт			
1	Подель внешнего блока ание Производительность Потребляемая мощность Номинальный ток ЕЕЯ Производительность Потребляемая мощность Номинальный ток СОР ельность по воздуху гкового давления IxBxГ) аковки (ШхВхГ) рутто пдкостной линии внажа	Подель внешнего блока ание В/ф/Гц Производительность кВт Потребляемая мощность Вт Номинальный ток А ЕЕВ — Производительность Вт Номинальный ток А СОР — ельность по воздуху м³/ч кового давления дБ(А) ІхВхГ) мм аковки (ШхВхГ) мм рутто кг Тип дкостной линии вовой линии мм	Подель внешнего блока COU-18HDR1 ание В/ф/Гц 220~240/1/50 Производительность кВт 5,3 (2,0-5,6) Потребляемая мощность Вт 420-1840 Номинальный ток А 1,8-7,8 ЕЕВ — 5,6 Производительность Вт 640-1640 Номинальный ток А 3-8,0 СОР — 4,0 ельность по воздуху м³/ч 900 гкового давления ДБ(А) 46~58 ІхВхГ) мм 1 245×680×240 аковки (Ш×В×Г) мм 1 325×770×330 рутто кг 34/40 тип R410A дкостной линии мм Ø12,7 енажа мм DN25	Подель внешнего блока ание В/ф/Гц 220~240/1/50 220~240/1/50 Производительность кВт 5,3 (2,0-5,6) Потребляемая мощность Вт 420—1840 Номинальный ток А 1,8—7,8 2,5—13 ЕЕR — 5,6 Производительность кВт (3,0—6,0) Потребляемая мощность Вт 640—1640 Номинальный ток А 3—8,0 5,5—11 СОР — 4,0 4,0 Номинальный ток А 3—8,0 5,5—11 СОР Вельность по воздуху м³/ч 900 1150 ВКВ×Г) мм 1245×680×240 ВКВ×Г) мм 1245×680×240 ВКВ×Г) мм 1325×770×330 ВКВ ОЗ ВК

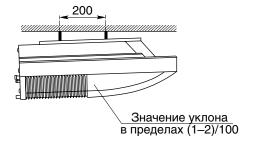
Электрические схемы подключения

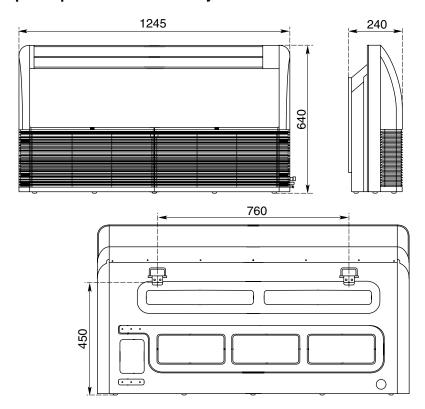
CUA-18HVR1&COU-18HDR1; CUA-24HVR1&COU-24HDR1

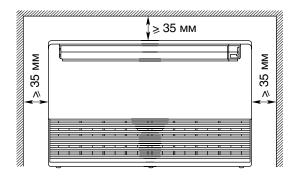
Наружный блок

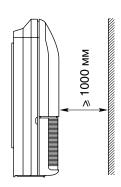
CUA-36HVR1&COU-36HDR1



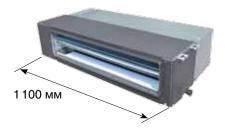


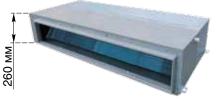



Габаритные размеры. Монтаж на потолок

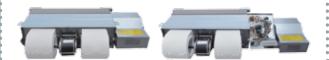


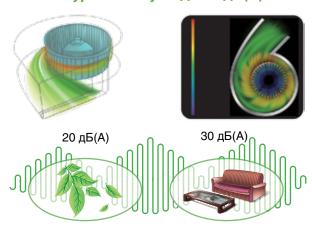
Габаритные размеры. Монтаж на стену





Компактные размеры низконапорного блока — ширина корпуса составляет всего 1100 мм, что повышает удобство монтажа и проектирования.


Ультратонкий корпус средненапорного блока.

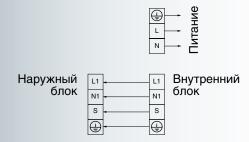

Три скорости вращения вентилятора.

Удобный доступ к блоку электрических подсоединений при монтаже и сервисе.

Применение авиационных технологий при проектировании центробежных вентиляторов для низконапорных канальных внутренних блоков позволило увеличить расход воздуха и при этом снизить уровень шума до 29 дБ(A).

Встроены функции защиты и автоматического перезапуска.

ОС-инверторный двигатель вентилятора внутреннего блока — возможна работа на сверхмалых скоростях и точное поддержание температуры.

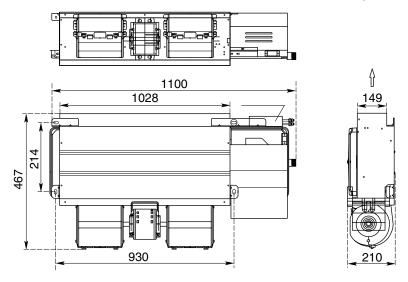


Низконапорные канальные внутренние блоки (DC-инвертор)

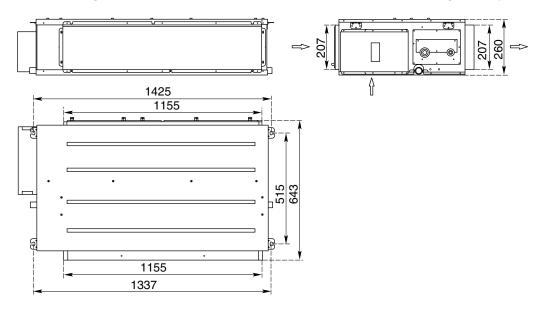
Мо	дель внутреннего блока		CTA-18HVR1	CTA-24HVR1	CTB-36HVR1
Модель внешнего блока		COU-18HDR1	COU-24HDR1	COU-36HDR1	
Электропитан	ние	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Охлаждение	Производительность	кВт	5,3 (2,0–5,6)	7,0 (3,5–8,0)	10,5 (6,6–12,8)
	Потребляемая мощность	Вт	420-1840	650–3050	1150–4760
	Номинальный ток	Α	1,8–7,8	2,8–13,3	4,7–25,3
	EER	_	5,5	5,5	5,1
Обогрев	Производительность	кВт	5,3 (3,0–6,0)	7,0 (4,5–8,5)	10,5 (7,35–13,2)
	Потребляемая мощность	Вт	640–1640	1 550–2 650	1200-4250
	Номинальный ток	Α	3,0-8,0	5,8–11,3	4,9–19,0
	COP	_	3,8	3,8	3,8
Производител	тыность по воздуху	м ³ /ч	800	1 050	1 800
Свободный ст	гатический напор	Па	0–30	0–30	30–50
Уровень звук	ового давления	дБ(А)	46~58	56~63	55~63
Размеры (Ш×	В×Г)	ММ	1 100×210×467	1 100×210×467	1 425×260×643
Размеры упан	ковки (Ш×В×Г)	ММ	1310×240×510	1310×240×510	1 490×325×720
Вес нетто/бру	/TTO	КГ	22,5/25,5	25/28	46/50
Хладагент		Тип	R410A	R410A	R410A
Диаметр жид	костной линии	ММ	Ø6,35	Ø9,52	Ø9,52
Диаметр газо	вой линии	ММ	Ø12,7	Ø15,88	Ø15,88
Диаметр дрен	нажа	ММ	DN25	DN25	DN25
Пульт дистань	ционного управления в компл	пекте	Пров	одной пульт управл	ения

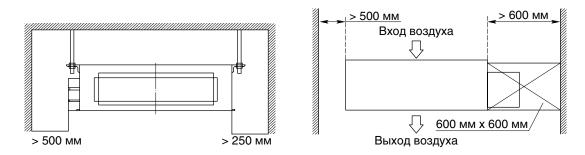
Электрические схемы подключения

CTA-18HVR1&COU-18HDR1; CTA-24HVR1&COU-24HDR1



CTB-36HVR1&COU-36HDR1





Общий вид и габаритные размеры внутреннего блока (для моделей с низким внешним статическим давлением — серия ТА)

Общий вид и габаритные размеры внутреннего блока (для моделей со средним внешним статическим давлением — серия ТВ)

Пульты дистанционного управления

Беспроводные ПДУ

- Две модели пультов управления.
- Радиус действия до 8 м.
- 5 режимов работы: автоматический → охлаждение → осушение → обогрев → вентиляция.
- 24-часовой таймер «Вкл./Выкл.».
- Диапазон установки температуры 16–32 °C.
- Три скорости вентилятора.
- Режим сна.
- Идут в комплекте со всеми внутренним блоками, кроме канальных.
- Для канальных блоков поставляются как опция.

Проводные ПДУ

- ЖК-дисплей.
- Длина провода 5-8 метров.
- 5 режимов работы: автоматический → охлаждение → осушение → обогрев → вентиляция.
- 24-часовой таймер «Вкл./Выкл.».
- Диапазон установки температуры 16–32 °C.
- Три скорости вентилятора.
- Поставляются в комплекте с канальными бло-
- Для кассетных и напольно-потолочных блоков — опция.

Универсальный наружный блок промышленной серии

По предварительному заказу

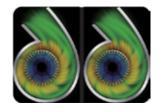
96000 **STE/4**

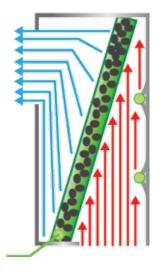
Спиральные компрессоры от известных фирм-производителей: обладающие малой инертностью, высокопроизводительные и надежные. Конструкция с низким уровнем пульсаций и адаптация для работы на обогрев при низких температурах окружающей среды.

Принцип работы

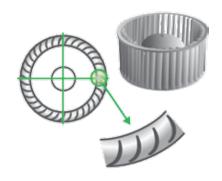
в разрезе

Неподвижная спираль Подвижная спираль Область сжатия


Мод	ель внешнего бл	COT-96HZR1	
Электропитание		В/ф/Гц	380~415/3/50
Ох- лаж-	Производи- тельность	кВт	28
дение	Потребляемая мощность	кВт	9,4
	Номинальный ток	Α	16
Обо- грев	Производи- тельность	кВт	30
	Потребляемая мощность	кВт	9
	Номинальный ток	Α	15,3
Производительность по воздуху		М ³ /Ч	12000
Уровень звукового давления		дБ(А)	63
Размер	ы (Д×В×Г)	ММ	974×1618×766
Размер (Д×В×Г)	ы упаковки)	ММ	1030×1750×825
Вес нет	то/брутто	КГ	194/200
Хладаг	ент R410A	Г	2×5000
Диаметры жидкостной линии		ММ	Ø9,52×2
Диаметр газовой линии		ММ	Ø19,05×2
Максим	альная длина	М	50
Максим высот	альный перепад	М	20


Новый дизайн внутреннего блока — простой и удобный в обслуживании. Он может успешно использоваться в крупных офисах, магазинах, ресторанах и т.п.

Применение авиационных технологий при проектировании центробежного вентилятора — сдвоенная конструкция вентилятора позволила увеличить расход и снизить уровень шума.


Новая компановка блока — увеличение теплообменной поверхности и эффективности.

Новая система воздухораспределения — равномерное распределение холодного воздуха в помещении для достижения максимального уровня комфорта.


Тщательно спроектированные лопатки рабочего колеса позволили снизить уровень шума и увеличить расход воздуха.

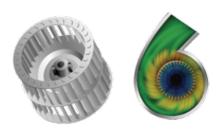
Возможность опционального выбора панели управления.

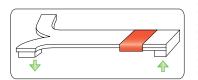
Простота ментажа и обслуживания.

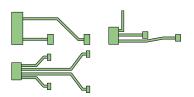
Компактные размеры — ширина блока всего 420 мм.

Моде	ль внутреннего (блока	CFAi-96HR1
Модель внешнего блока			COT-96HZR1
Электр	опитание	В/ф/Гц	220~240/1/50
Ох- лаж-	Производи- тельность	кВт	28
дение	Потребляемая мощность	Вт	740
	EER	_	2,76
Обо- грев	Производи- тельность	кВт	30
	Потребляемая мощность	Вт	740
	COP	_	3,06
Производительность по воздуху		М ³ /Ч	3600 (3300–4000)
Уровень звукового давления		дБ(А)	49 (45–52)
Размер	ы (Д×В×Г)	ММ	1200×1855×420
Размер (Д×В×Г)	ы упаковки)	ММ	1350×1960×452
Вес нет	то/брутто	КГ	120/135
Хладаг	ЭНТ		R410A
Диаметр жидкостной линии		ММ	Ø9,52×2
Диаметр газовой линии		ММ	Ø19,05×2
Диаметр дренажа		ММ	DN25
Пульт дистанционного управления в комплекте		Беспроводной пульт	

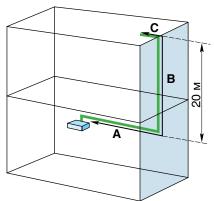
Высоконапорный канальный внутренний блок промышленной серии




Опция Стандартный ПДУ



Центробежный вентилятор — низкий уровень шума и большой расход воздуха.

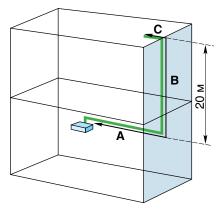

Высокий статический напор в 120 Па позволяет использовать сложные системы воздуховодов.

 $\cot - 20 \text{ M}.$

Максимальная длина фреонопроводов между внутренним и наружным блоками составляет 50 м. Максимальный перепад вы-

Модель внутреннего блока			CTHi-96HR1	
Модель внешнего блока			COT-96HZR1	
Электр	опитание	В/ф/Гц	220~240/1/50	
Ох- Производи- лаж- тельность		кВт	28	
дение	Потребляемая мощность	Вт	1 200	
	EER	_	2,64	
Обо- грев	Производи- тельность	кВт	30	
	Потребляемая мощность	Вт	1 200	
	COP	_	2,94	
Производительность по воздуху		м ³ /ч	3800 (3300–4400)	
Свободный статиче- ский напор		Па	120	
Уровені давлені	ь звукового ия	дБ(А)	50 (45–55)	
Размер	ы (Ш×В×Г)	ММ	1440×811×448	
Размер (Ш×В×Г	ы упаковки	ММ	1 595×855×560	
Вес нет	то/брутто	КГ	100/104	
Хладаг	ЭНТ		R410A	
Диаметр жидкостной линии		ММ	Ø9,52×2	
Диаметр газовой линии		ММ	Ø19,05×2	
Диамет	р дренажа	ММ	DN25	
Пульт дистанционного управления в комплекте			Проводной пульт управления	

Стандартно комплектуется проводным пультом дистанционного управления; беспроводной пульт ДУ — опция.


Терморасширительный вентиль с широ- ким диапазоном регулирования (опционально).

Опционально возможно расширение диапазона рабочих температур до −10 °C.

Максимальная длина фреонопроводов 50 м, максимальный перепад высот — 20 м (для моделей мощностью 28 и 45 кВт).

ККБ мощностью 28 и 45 кВт выполняются в корпусах наружных блоков VRF.

ККБ

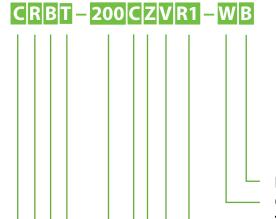
Модель внешнего блока		COU-18CR1-A	COU-24CR1-A	COU-36CR1-A	
Электропитан	ие	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Охлаждение Производительность		кВт	5,3	7,1	10,5
	Потребляемая мощность	Вт	1 900	2400	4300
	Номинальный ток	Α	8,8	10,6	19,8
Максимальна	я потребляемая мощность	Вт	2500	2800	5370
Максимальнь	ій ток	Α	12,6	14,1	27,1
Компрессор	Тип		Rotary	Rotary	Scroll
	Производитель		Hitachi	Hitachi	Sanyo
	Количество		1	1	1
Расход возду	xa	м ³ /ч	2800	3800	4800
Уровень звук	ового давления	дБ(А)	53	57	60
Размеры (Д×I	З×Г)	MM	866×535×304	930×700×370	960×840×390
Размеры упан	ковки (Д×В×Г)	ММ	920×585×335	990×770×410	1 030×950×435
Вес нетто/бру	тто	КГ	39/41	53/56	77/86
Хладагент	Тип		R410A	R410A	R410A
	Количество	Г	1250	2100	2500
Диаметр жид	костной линии	ММ	Ø6,35	Ø9,52	Ø9,52
Диаметр газовой линии мм		ММ	Ø12,7	Ø15,88	Ø15,88
Максимальна	я длина трубопровода	М	30	30	30
Максимальнь	ій перепад высот	М	10	10	10

ККБ (продолжение)

N	Лодель внешнего блока		COU-48CZR1-A	COU-60CZR1-A
Электропитание В/ф/Гц		В/ф/Гц	380~415/3/50	380~415/3/50
Охлаждение	Производительность	кВт	14,0	16,0
	Потребляемая мощность	Вт	5230	5700
	Номинальный ток	Α	8,8	10,0
Максимальна	я потребляемая мощность	Вт	5 800	6 600
Максимальнь	ій ток	Α	9,7	11,8
Компрессор	Тип		Scroll	Scroll
	Производитель		Sanyo	Sanyo
	Количество		1	1
Расход возду	xa	м ³ /ч	5 600	6000
Уровень звуко	ового давления	дБ(А)	63	60
Размеры (Д×	3×Γ)	ММ	1 070×995×400	911×1330×400
Размеры упан	ковки (Д×В×Г)	ММ	1 145×1 120×475	964×1 445×402
Вес нетто/бру	/тто	КГ	88/96	96/107
Хладагент	Тип		R410A	R410A
	Количество	Г	2100	3600
Диаметр жид	костной линии	ММ	Ø9,52	Ø9,52
Диаметр газо	вой линии	ММ	Ø19,05	Ø19,05
Максимальна	я длина трубопровода	М	30	30
Максимальнь	ій перепад высот	М	10	10

ККБ (окончание)

I.	 Подель внешнего блока		COU-96CZR1-A	COU-150CZR1-A
		D/-b/E		
Электропитан	ние	В/ф/Гц	380~415/3/50	380~415/3/50
Охлаждение	Производительность	кВт	28,0	45,0
	Потребляемая мощность	Вт	9400	14600
	Номинальный ток	Α	19,5	24,8
Максимальна	я потребляемая мощность	Вт	13000	18000
Максимальнь	ій ток	Α	24,3	33,6
Компрессор Тип			Scroll	Scroll
	Производитель		Sanyo	Sanyo
	Количество		2	1
Расход возду	xa	м³/ч	15 000	21 000
Уровень звук	ового давления	дБ(А)	63	65
Размеры (Д×	B×Γ)	ММ	974×1618×766	1264×1618×766
Размеры упан	ковки (Д×В×Г)	ММ	1 030×1 750*825	1315×1750×825
Вес нетто/бру	тто	КГ	194/200	234/241
Хладагент	Тип		R410A	R410A
	Количество	г	9500	12000
Диаметр жид	костной линии	ММ	Ø12,7	Ø12,7
Диаметр газо	вой линии	ММ	Ø25,4	Ø28,6
Максимальна	я длина трубопровода	М	50	50
Максимальнь	ій перепад высот	М	20	20



Высокая эффективность компрессора от известной фирмы-производителя малой мощности и стабильной работы.

Легкий доступ к внутренним компонентам систем.

11/1	23/4/1	0.0	11/4/01
11/1/15	11.31/1		1.15
444	рки		الزددر

Модель блока			CRB-200HZR1-W
Электр	опитание	В/ф/Гц	380~415/3/50
Ох- лаж-	Производи- тельность	кВт	70,4
дение	Потребляемая мощность	кВт	6,5
	EER	_	10,2
Обо- грев	Производи- тельность	кВт	75
	Производительность по воздуху		13450
Внешний статический напор		Па	100
	Уровень звукового давления		74,1
Размер	ы (Д×В×Г)	ММ	2753×2157×1245
Размеры упаковки (Д×В×Г)		ММ	2760×2175×1280
Вес не	Вес нетто/брутто		950/990
Хладаг	ент	Тип	R410A

Модификация: В — 2-е поколение.

Способ управления: W — проводной контроллер.

Тип хладагента: R1 — R410A.

Технология управления компрессором:

V — DC-инвертор, **on/off** — фиксированная.

Электропитание:

Z — 380–415 B / 3 φ / 50 Γц.

Режим работы:

С — только охлаждение, **H** — тепловой насос.

Производительность: 20 тонн.

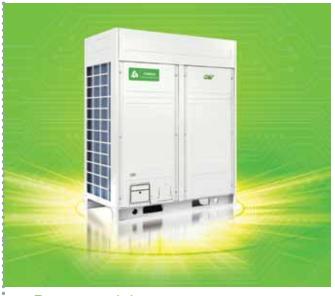
Исполнение по температурному диапазону

работы.

Сторона нагнетания: В — сбоку, D — вниз (опция).

Крышный кондиционер.

Chigo HVAC.



DC-инверторные технологии в системах VRF

Опираясь на десятилетный опыт в разработках и производстве систем с переменным расходом хладагента, Chigo Central Air-conditioning объединила и усовершенствовала ряд ключевых технологий, в том числе инверторное управление. В настоящее время мультизональная система Chigo CMV стала полностью DC-инверторной.

Базовые модули наружных блоков

- Шесть базовых наружных блоков: 8, 10, 12, 14, 16 и 18 л.с.
- Для создания холодильных станций наружные блоки могут свободно комбинироваться.

- Высокая эффективность
- Преимущества в эксплуатации
- Преимущества в подборе и монтаже
- Комплект для диагностики Doctor Kit

Создана система CMV R с рекуперацией тепла

Создано новое поколение полностью DC-инверторных мультизональных систем CMV X с одними из лучших технических характеристик в отрасли

мультизональной системы VRF Chigo — CMV

2004

2002

Выход на рынок первой

Открыт общественный научно-исследовательский университет, что позволило разрабатывать, создавать и улучшать современные VRF-системы

2012

2011

Модернизация систем с целью повышения энергоэффективности, участие в системе госзакупок

2005

Развитие линейки систем CMV с технологией Digital scroll

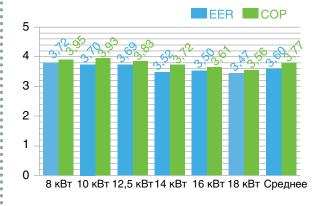
2006

Появление в линейке CMV модульных внешних блоков

Появление нового поколения систем CMV. Выполнена модернизация производственного процесса

Применение DC-инверторной технологии, что позволило новым системам стать энергоэффективнее и обеспечивать более высокий уровень комфорта

Маркировка оборудования Chigo VRF



CMV - V 125 TB / H N - R1 Внутренний блок **Хладагент: R1:** R410A. Тип электропитания: — 220–240 B / 1 ф / 50 Гц; **N** — 220–240 B / 1 ф / 60 Γц. Режим работы: Н — тепловой насос. Тип внутреннего блока: **Q** — кассетный, четырехпоточный; **Q4** — кассетный (compact 600×600) четырехпоточный; **G:** настенный; **ТА** — канальный низконапорный; **ТВ** — канальный средненапорный; **TH** — канальный высоконапорный; **LD** — напольно-подпотолочный. Индекс блока: холодопроизводительность в кВт ×10. Технология управления компрессором: **V** — инвертор. **C** — Chigo VRF-системы.

Применение высоких технологий при создании систем мини-VRF позволило получить широкую линейку наружных блоков от 8 до 18 кВт. Это значительно расширило границу применения оборудования данного класса.

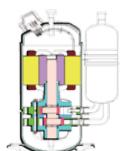
EER u COP

Высокоэффективный DC-инверторный компрессор

• Сдвоенный роторный DC-инверторный компрессор.

Высокая надежность.

Скорость вращения может быть снижена до 20 об./с.

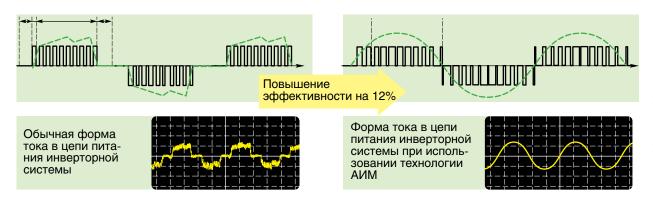

Высокая эффективность при частичной нагрузке.

- Высокая эффективность и низкий уровень шума, благодаря использованию самых современных технологий.
- Охрана окружающей среды.

Компрессор спроектирован для работы с хладагентом безопасным для окружающей среды.

• Низкий уровень вибрации.

Для сокращения вибраций при старте и работе компрессора применяется технология 2CYL.



- Высокая эффективность
- Высокая надежность
- Низкий уровень вибраций
- Низкий уровень шума
- Высокий ресурс

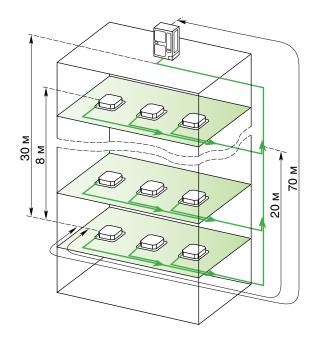
Амплитудно-импульсная модуляция (АИМ)

Идеальное сочетание АИМ-технологии управления с частотой вращения компрессора и высококачественные инверторы позволили снизить реактивные потери и увеличить эффективность электродвигателя на 12%.

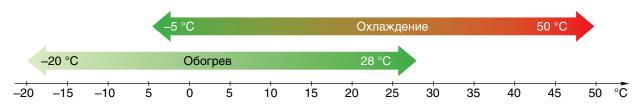
Применение технологий, позволяющих снизить уровень шума

- Бесщеточный DC-мотор. Используется ротор с постоянным магнитом. Это позволило снизить уровень шума и вибраций.
- Специально спроектированный вентилятор. Позволил увеличить расход воздуха и при этом снизить уровни шума и вибрации.
- Шумопоглотитель в холодильном контуре. Позволил снизить уровень шума от движущегося хладагента.

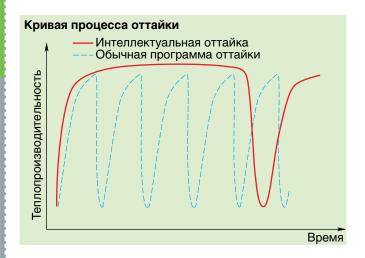
Высокоэффективный DC-мотор вентилятора


- Высокоэффективный DC-мотор вентилятора.
- Низкий уровень шума и высокая эффективность благодаря высокой плотности навивки.
- Бесщеточный двигатель.

Большие длины трасс и перепады высот мини-систем


- Максимальная эквивалентная длина трубопровода: **70** м.
- Максимальная физическая длина трубопровода: 60 м.
- Перепад высот: наружный блок выше: < 30 м; наружный блок ниже: < 20 м.
- Перепад высот между внутренними блоками: 8 м.
- Эквивалентная длина трассы от первого разветвителя до самого удаленного внутреннего блока: 20 м.
- Загрузка наружного блока внутренними от 50 до 130%.

Широкий диапазон рабочих температур


Возможность работы в режиме охлаждения при температурах наружного воздуха до $+50~^{\circ}$ С — подходит для самых жарких регионов.

Возможность работы в режиме обогрева при температурах наружного воздуха до –20 °C. Система CMV может обеспечивать стабильный обогрев и в холодную зиму.

Интеллектуальная оттайка

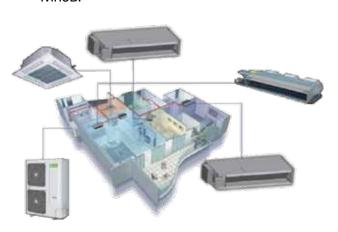
Программа оттайки запускается только тогда, когда это необходимо, в то время как у большинства других систем она запускается через определенные промежутки времени, что приводит к снижению уровня комфорта.

- Обычные программы оттайки запускаются через фиксированные промежутки времени. Продолжительность периода оттайки при этом также постоянна.
- Интеллектуальная оттайка активируется, когда производительность наружного блока снижается вследствие его обмерзания. Такая программа снижает колебания температуры в обслуживаемых помещениях, что повышает уровень комфорта.

Защита двигателя вентилятора

В случае если вентилятор наружного блока крутится в обратную сторону под воздействием внешних атмосферных фак-

торов, при запуске можно повредить мотор вентилятора. Чтобы исключить подобное, вентиляторы наружного блока запустятся только тогда, когда скорость вращения снизится до приемлемой.



Движение в правильном направлении.
Пуск возможен

Вращение в направлении противоположном рабочему. Срабатывает защита — оборудование не запускается

Использование оборудования Mini CMV позволит не портить внешний вид фасада

• К одному наружному блоку могут быть подключены внутренние блоки разных типов.

 Большие длины трасс фреонопроводов, что дает свободу при размещении наружного блока

Активный PFC-модуль

- PFC коррекция коэффициента (фактора) мощности.
- Предохраняет оборудование от не правильно подключения фаз.
- C PFC-модулем уровень использо-

вания мощности выше, коэффициент мощности до 98%. Система работает более эффективно.

Коэффициент мощности — это отношение эффективно используемой мощности к величине потребляемой мощности.

Чем выше коэффициент мощности, тем выше уровень использования мощности.

Методы адресации

 Два варианта назначения адресов: автоматическая адресация — производится системой;

ручная — с проводного пульта дистанционного управления.

Дисплей на плате управления наружного блока

Светодиодный дисплей отображает состояние системы и коды ошибок.

Спецификация наружных блоков мини-систем

	HP		2,8	3,5	4,5	
Модель			CMV- V080W/ R1	CMV- V100W/ R1	CMV- V125W/ ZR1	
Электропитание В/фл		В/ф/Гц	220~240/1/50	220~240/1/50	380~415/3/50	
Максимальное количество под- ключаемых внутренних блоков			4	5	6	
Охлажде-	Мощность	кВт	8,0	10,0	12,5	
ние	Потребляе- мая мощ- ность	кВт	2,15	2,68	3,38	
	EER	_	3,72	3,70	3,69	
Обогрев	Мощность	кВт	9,0	11,5	14,0	
	Потребляе- мая мощ- ность	кВт	2,28	2,90	3,66	
	COP	_	3,95	3,93	3,83	
Дипазон	Охлаждение	°C	-5+50	-5+50	-5+50	
рабочих температур	Обогрев	°C	-20+28	-20+28	-20+28	
Компрес-	Количество		1	1	1	
сор	Тип		Сдвоенный ротационный герметичный			
Хладагент	Тип		R410A			
	Дросселирование		ЭРВ			
	Заправка	КГ	3,0	3,0	3,1	
Вентиля-	Двигатель		Бесщеточный, DC-электродвигатель			
тор	Количество		2	2	2	
	Свободный статический напор	Па	95	95	95	
Габариты	Блок	ММ	1 054×994×399	900×1 328×345	900×1328×345	
(Д×В×Г)	Упаковка	ММ	1 145×1 120×475	964×1 445×402	964×1 445×402	
Bec		КГ	80	80	93	
Уровень звукового дав- ления		дБ(А)	45–56	45–56	45–58	
	ружного бло- ими блоками	%	50–130	50–130	50–130	
Диаметр жи линии	дкостной	ММ	Ø9,53	∅9,53	Ø9,53	
Диаметр газ	вовой линии	ММ	Ø15,9	Ø15,9	Ø15,9	

Спецификация наружных блоков мини-систем

	HP		5	6	6	
	Модель		CMV- V140W/ ZR1	CMV- V160W/ ZR1	CMV- V180W/ ZR1	
Электропитание В/с		В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	
Максимальное количество под ключаемых внутренних блоког			7	8	8	
Охлажде-	Мощность	кВт	14,0	16,0	18,0	
ние	Потребляе- мая мощ- ность	кВт	3,98	4,58	5,19	
	EER	_	3,52	3,49	3,47	
Обогрев	Мощность	кВт	16,0	18,0	20,0	
	Потребляе- мая мощ- ность	кВт	4,30	5,13	5,62	
	COP	_	3,72	3,51	3,56	
Дипазон рабочих	Охлаждение	°C	- 5+50	-5+50	-5+50	
температур	Обогрев	°C	-20+28	-20+28	-20+28	
Компрес-	Количество		1	1	1	
cop	Тип		Сдвоен	нный ротационный герме	тичный	
Хладагент	Тип		R410A			
	Дросселирование		ЭРВ			
	Заправка	КГ	4,05	4,2	4,2	
Вентиля-	Двигатель		Бесщеточный, DC-электродвигатель			
тор	Количество		2	2	2	
	Свободный статический напор	Па	95	95	95	
Габариты	Блок	ММ	900×1 328×345	900×1328×345	900×1 328×345	
(Д×В×Г)	Упаковка	ММ	964×1 445×402	964×1445×402	964×1 445×402	
Bec		КГ	93	100	100	
Уровень звукового дав- ления		дБ(А)	45–58	45–58	45–58	
	ружного бло- ими блоками	%	50–130	50–130	50–130	
Диаметр жи линии	дкостной	ММ	Ø9,53	∅9,53	Ø9,53	
Диаметр газ	вовой линии	ММ	Ø15,9	Ø15,9	Ø15,9	

CMU-III CMU-X

Высокая эффективность

Chigo Central Air-conditioning уделяет большое внимание разработке экологичных и энергоэффективных продуктов.

Компания не жалеет средств и усилий на проведение исследовательских мероприятий, чтобы стать лидером в технологиях с низким выбросом парниковых газов, в технологиях высокой экономичности и энергоэффективности!

Технологии современных мультизональных систем CMV

Бесщеточные DC-электродвигатели

- Высокая эффективность
- Низкий уровень шума

DC-инверторный компрессор

- Адаптирован для применения R410A
- Асимметричный дизайн спиралей
- Ротор с постоянными магнитами из неодима

CMV-//	CMV-X
•	•

Амплитудноимпульсная модуляция

 Высокая точность управления частотой вращения электромоторов

Распределение хладагента

 Усовершенствованная технология распределения хладагента позволила увеличить долю жидкой фазы на выходе из конденсатора

Плавное регулирование

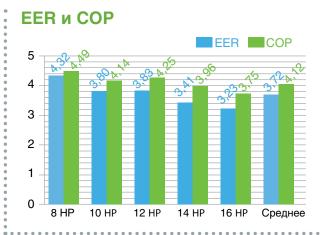
- Плавное регулирование мощности в зависимости от реальной нагрузки
- Высокая эффективность и энергосбережение

Переохлаждение

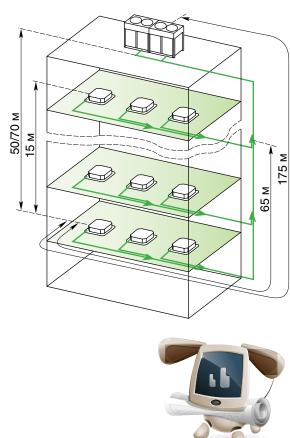
 Дополнительное переохлаждение хладагента в наружном блоке позволило повысить энергоэффективность системы

Трубы с внутренним оребрением

• Увеличена эффективность теплообмена

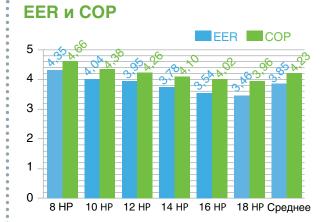

Оребрение теплообменника с перекрестными насечками

- Снижено сопротивление воздуха
- Улучшены процессы оттайки и теплообмена

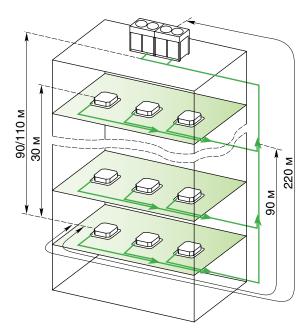

CMV-II — второе поколение VRF-систем Chigo.

Каждый модуль содержит один DCинверторный компрессор и один-два компрессора с фиксированной частотой вращения. Все двигатели вентиляторов DC-инверторные, бесщеточные. Система имеет высокую энергоэффективность.

Большие длины трасс и перепады высот


- Суммарная длина трубопровода до 1000 м.
- Максимальная эквивалентная длина трубопровода: 175 м.
- Максимальная физическая длина трубопровода: 150 м.
- Перепад высот: наружный блок выше: < 50 м; наружный блок ниже: < 70 м.
- Перепад высот между внутренними блоками: 15 м.
- Эквивалентная длина трассы от первого разветвителя до самого удаленного внутреннего блока: 65 м.
- Загрузка наружного блока внутренними от 50 до 130%.

 $\mathsf{CMV}\text{-}\mathsf{X}$ — последнее поколение систем VRF от Chigo .


Всистеме установлены DC-инверторные бесщеточные компрессоры и двигатели вентиляторов. Система имеет более высокие показатели энергоэффективности по сравнению с системами второго поколения, а также имеет свои уникальные особенности.

Большие длины трасс и перепады высот

- Суммарная длина трубопровода до 1000 м.
- Максимальная эквивалентная длина трубопровода: 220 м.
- Максимальная физическая длина трубопровода: 190 м.
- Перепад высот: наружный блок выше: < 90 м; наружный блок ниже: < 110 м.
- Перепад высот между внутренними блоками: **30** м.
- Эквивалентная длина трассы от первого разветвителя до самого удаленного внутреннего блока: 90 м.
- Загрузка наружного блока внутренними от 50 до 130%.

Высокоэффективный DC-инверторный компрессор

- Инверторный компрессор производства Hitachi.
- Озонобезопасный хладагент R410A.
- Малые колебания крутящего момента, низкий уровень вибрации и шума.
- Высокая эффективность благодаря запатентованной конструкции компрессора.
- Высокоэффективная система смазки.
- Высокая надежность.
- Широкий диапазон регулирования производительности.

- Сторона высокого давления:
 - хладагент сразу после испарителя попадает в полость сжатия, таким образом плотность его паров выше, а соответственно и выше эффективность процесса сжатия;

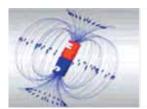
CMV-II CMV-X

- хладагент после сжатия поступает в полость, где находится электродвигатель, — эта полость является буферной для компрессора, благодаря ее большому объему снижен уровень шума и вибраций.
- Ротор с постоянными магнитами из неодима — увеличенное магнитное поле, больший крутящий момент и повышенная эффективность.
- Обмотки электродвигателя повышенной плотности — повышение эффективности на низких оборотах.

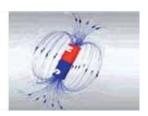
Технология поддержания масляной пленки постоянной толщины позволила снизить уровень шума и уменьшить перетечки хладагента.

Конструкция спиралей компрессора адаптирована под применение R410A.

Высокая точность обработки деталей позволила повысить эффективность сжатия на 15%.


Сосредоточенные обмотки позволили повысить эффективность на низких частотах вращения.

Высокая несущая способность подшипников.


Ротор с постоянными магнитами из неодима

CMV-//	сми-х
•	•

Мощные постоянные неодимовые магниты, встроенные в ротор, обеспечивают высокую эффективность и большой крутящий момент.

Обыкновенный ферритовый магнит

Постоянный неодимовый магнит

Сосредоточенные обмотки

CMV-II	CMV-X
•	•

Эффективность сосредоточенных обмоток на 12% выше.

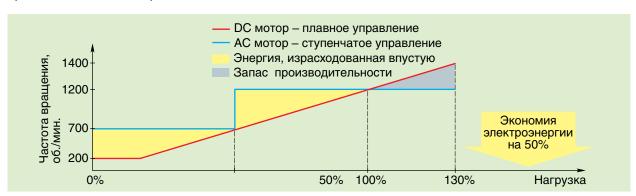
Сосредоточенная обмотка

Распределенная обмотка

Высокоэффективный DC-мотор вентилятора

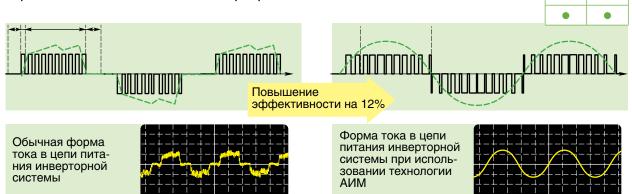
- Высокоэффективный DC-мотор вентилятора (Panasonic).
- Низкий уровень шума и высокая эффективность благодаря высокой плотности навивки.
- Бесщеточный двигатель.

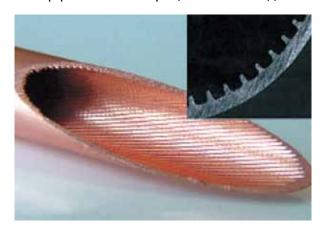
CMV-//	CMV-X
•	•


- Высокий уровень шума.
- Регулирование отсутствует.

Плавное управление

В зависимости от рабочего давления происходит плавная регулировка скорости вращения вентилятора, что позволяет сни-


зить энергопотребление и оптимально управлять работой системы.


Амплитудно-импульсная модуляция (АИМ)

Идеальное сочетание АИМ-технологии управления с частотой вращения компрессора и высококачественные инверторы позволили снизить реактивные потери и увеличить эффективность электродвигателя на 12%.

Труба с внутренней нарезкой

Благодаря внутренней нарезке увеличена площадь внутренней поверхности трубы. Внутренние ребра повышают турбулентность потока и тем самым увеличивают эффективность процесса теплоотдачи.

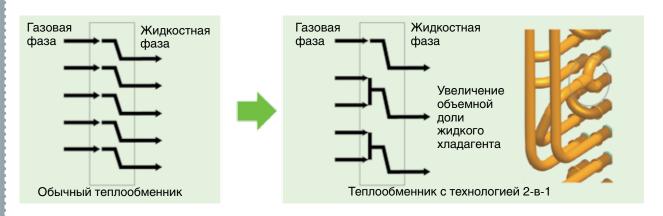
11000-	<u> </u>
_	труба с внутренней нарезкой
Коэффициент геплопередачи, Вт/(м³К) 000	■— Обычная труба
≥)/_	y
, 	×
두 꽃 8000-	_
Коэффициент теплопередачь 20	
- PEL	
96 <u>1</u>	-
	· · · · · · · · · · · · · · · · · · ·
10	
	Массовый расход хладагента, кг/с
2000	/ *
6000-	***************************************
_	*
_	***************************************
_	***************************************
1, BT/(M³K)	*
1, BT/(M³K)	
1, BT/(M³K)	Taylia a puntanaunaŭ napagraŭ
ффициент попередачи, Вт/(м³K) 00	 Труба с внутренней нарезкой Обычная труба
ффициент попередачи, Вт/(м³K) 00	• 06
1, BT/(M³K)	• 06

Конструкция теплообменника наружного блока с технологией переохлаждения



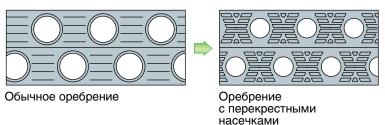
Вход и выход хладагента в теплообменнике разнесены. Благодаря этому снижено влияние входящего газообразного хладагента высокой температуры на выходящий

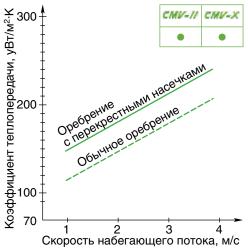
жидкий хладагент низкой температуры — это позволило повысить степень переохлаждения хладагента и увеличить эффективность системы.



Распределение хладагента 2-в-1

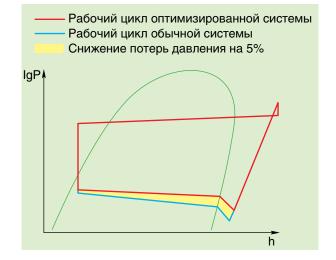
Теплообменник сконструирован таким образом, что количество каналов для жидкой фазы хладагента в 2 раза меньше чем количество каналов для газообразной


фазы. Благодаря этому возрастает объемная доля жидкого хладагента на выходе из конденсатора, а внутренние блоки смогут собрать больше тепла.


CMV-II CMV-X

Оребрение с перекрестными насечками

- Меньшее сопротивление воздуха и больший коэффициент теплопередачи.
- Улучшена технология разморозки теплообменника.

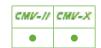


Оптимизированная конструкция системы

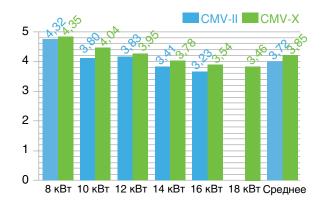
- Благодаря оптимизации конструкции трубопроводов на 15% снижен объем меди, необходимой для производства, и на 5% снижено гидравлическое сопротивление системы.
- Увеличены EER и COP вследствие повышения температуры испарения и снижения работы компрессора.

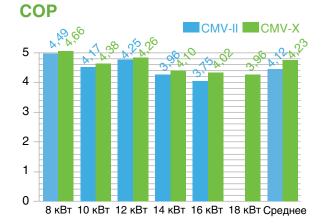
CMV-//	CMV-X
•	•

Преимущества для пользователя


Создавая максимальный комфорт...

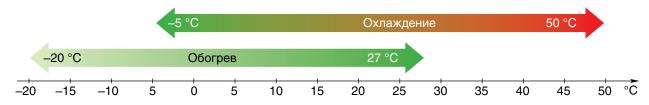
Сhigo уделяет основное внимание главной задаче систем кондиционирования воздуха — созданию комфортной и приятной среды обитания для человека. Новые технологии DC-инверторных систем VRF — CMV гарантируют быстрые охлаждение и обогрев, точный контроль температуры, низкий уровень шума, использование экологически безопасных хладагентов и многое другое. Chigo стремится создать для своих потребителей атмосферу комфорта!


Превосходная энергоэффективность (EER и COP)


Благодаря DC-инверторным устройствам (компрессору и мотору вентилятора), оптимизированной конструкции тру-

бопроводов и новой логике управления, коэффициенты EER и COP системы значительно увеличены.

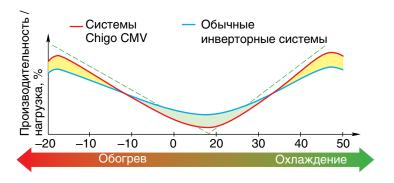
EER

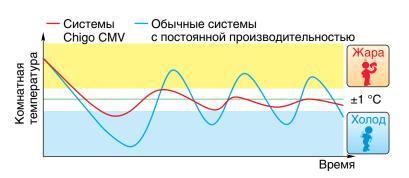


Широкий диапазон рабочих температур

Возможность работы в режиме охлаждения при температурах наружного воздуха до +50 °C — подходит для самых жарких регионов.

Возможность работы в режиме обогрева при температурах наружного воздуха до -20 °C. Система CMV может обеспечивать стабильный обогрев и в холодную зиму.



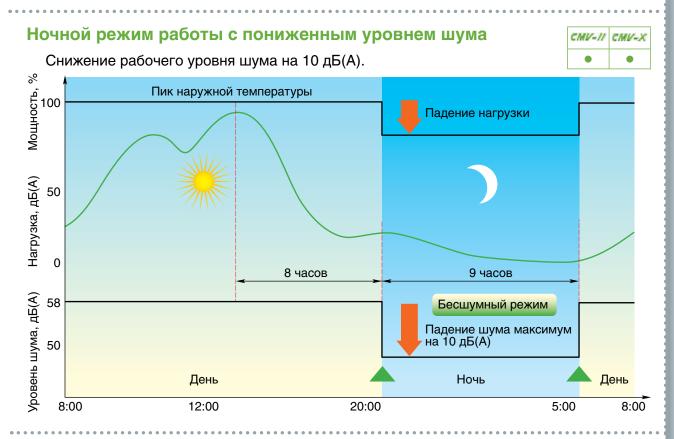

Высокий уровень комфорта

Благодаря DC-инверторным устройствам (компрессору и мотору вентилятора), оптимизированной конструкции трубопроводов и новой логике управления, системы Chigo CMV отлично охлаждают и нагревают помещение.

Точность поддержания температуры обеспечивается широким диапазоном регулирования EXV. Диапазон отклонения температуры воздуха в помещении от установленного ±0,5 °C.

Семь шагов по снижению уровня шума

Снижение уровня шума на 10 дБ(А).



Экологически безопасная

Используется озонобезопасный хладагент R410A (HFC). Его применение обусловлено снижением вредных выбросов в атмосферу, так как позволяет создавать более энергоэффективное оборудование.

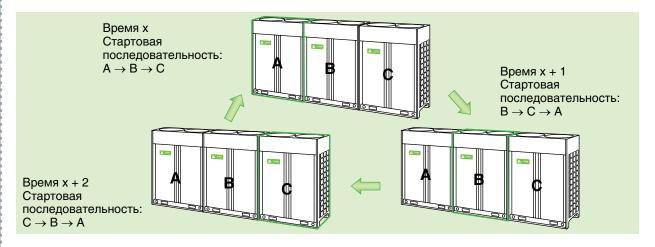
CMV-11 CMV-X ●

Функция удаления снега

- Чтобы снег, скапливающийся на наружном блоке, не заблокировал работу вентилятора, вентилятор наружного блока периодически включается и сдувает его. Это позволяет избежать ситуации, когда накопленный снег замерзнет и заблокирует вращение лопастей вентилятора, что может привести к повреждению или выходу из строя электродвигателя.
- Функция активируется при температурах наружного воздуха ниже 0 °C.

Оптимизированная форма вентилятора

Разработана специальная форма лопастей, позволяющая снизить вибрации.



Ротация работы наружных блоков

В одной холодильной станции любой наружный блок может быть ведущим. Специальная функция помогает обеспечить

равномерную выработку ресурса наружных блоков.

Интеллектуальная оттайка

Программа оттайки запускается только тогда, когда это необходимо, в то время как у большинства других систем она

запускается через определенные промежутки времени, что приводит к снижению уровня комфорта.

- Обычные программы оттайки запускаются через фиксированные промежутки времени. Продолжительность периода оттайки при этом также постоянна.
- Интеллектуальная оттайка активируется, когда производительность наружного блока снижается вследствие его обмерзания. Такая программа снижает колебания температуры в обслуживаемых помещениях, что повышает уровень комфорта.

CMV-II	CMV-X
	•

Решения для любых помещений

- 11 типов внутренних блоков, подходит для помещений различного назначения.
- Отдельная серия приточно-вытяжных вентиляционных установок с рекуперацией тепла.

CMV-//	CMV-X
•	•

Пластинчатый обменник-экономайзер

- Обеспечение дополнительного переохлаждения хладагента (охлаждение).
- Повышение эффективности за счет комплекса улучшений: усовершенствованный т/о, пластинчатый экономайзер + новая логика управления.

CMV-//	сми-х
	•

Преимущества для монтажника

Удобство работы проектировщика и монтажника

DC-инверторная VRF-система CMV — система со свободной комбинацией наружных блоков. Chigo постоянно оптимизирует габариты наружных блоков, чтобы снизить требуемые пространства для размещения оборудования и стать удобней как для монтажников и проектировщиков, так и для владельцев зданий.

Благодаря новым технологиям Chigo, снижается трудоемкость монтажа, а процесс подбора и проектирования становится легче!

Объединение **СМУ-//** в холодильную станцию до четырех наружных блоков мощностью до 64 HP

50 HP ~ 64 HP

Объединение **СМУ-Х** в холодильную станцию до четырех наружных блоков мощностью до 72 HP

Регулируемый напор вентилятора наружного блока

- Благодаря DC-инверторному электродвигателю, при проведении пуско-наладочных работ можно менять свободный напор вентилятора наружного блока.
- Наружные блоки могут устанавливаться в специальные ниши или технические помещения.
- Максимальный свободный статический напор 85 Па.

	4		_	
4	1			
	4	3	0	
	3			

Новый проводной пульт дистанционного управления (ПДУ)

- Двусторонняя связь. Рабочие параметры внутреннего блока (код ошибки, температура, адрес) могут отражаться на ПДУ.
- Компактный дизайн.

Стандартные размеры

Параметры работы внутреннего блока

Запрос параметров работы внутренних блоков

- Трехдюймовый экран с белой подсветкой.
- Таймер.
- Пользователь может легко, удобно и безопасно для системы проверить коды ошибок и запросить информацию о состоянии блока.

Просто

Безопасно

Удобно

Сервисное окно на блоке управления

Благодаря сервисному окну на блоке управления, проверка состояния системы стала проще, нет необходимости снимать с него защитную крышку.

Проверка кодов ошибок

Автоматическая адресация

Автоматическая адресация позволяет снизить риск ошибок.

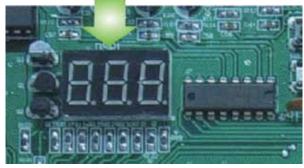
- 54% ошибок происходит из-за неправильного подключения.
- 65% ошибок неправильного подключения происходит из-за неправильной адресации.

	CMV-//	CMV-X
М	•	•

- - забыт алгоритм адресации,
 - неправильная настройка,
 - повтор адреса.

Методы адресации

- Два варианта назначе-
 - автоматическая адресация производится системой;
 - ручная с проводного пульта дистанционного управления.
- Способ адресации выбирается переключением на плате наружного блока.



CMV-// CMV-X

Дисплей на плате управления наружного блока

CMV-//	CMV-X
•	•

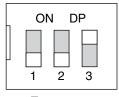
Светодиодный дисплей отображает состояние системы и коды ошибок.

Сбор холодильного агента

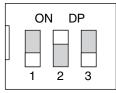
- Нажмите кнопку принудительного охлаждения. После того как система отработала несколько минут, закройте клапан высокого давления.
- После того как на дисплее высветится «dh», закройте клапан низкого давления и отключите питание.

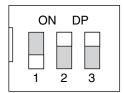

CMV-//	сми-х
	•

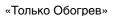
Принудительное назначение режимов

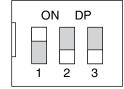

- Пять режимов ограничения работы:
 - режим работы по первому включенному внутреннему блоку;
 - приоритет работы «Охлаждение» (или «Обогрев»);
 - режим «Только охлаждение» (или «Только обогрев»).

• Ограничение режимов активируется на плате наружного блока.




Приоритет «Обогрев» (по умолчанию)




Приоритет «Охлаждение»

Режим работы по первому включенному внутреннему блоку

«Только Охлаждение»

Шестиступенчатая технология контроля уровня масла

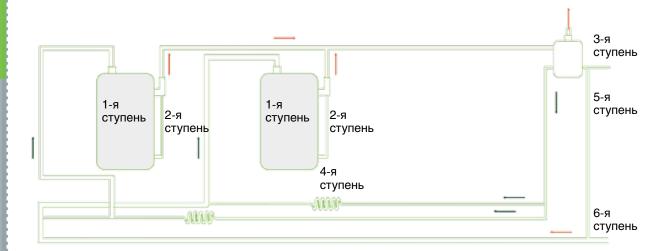
Это одна из ключевых технологий, отвечающих за безопасность и надежность системы кондиционирования.

Первая ступень.Встроенный в компрессор отделитель масла

Вторая ступень. Контроль уровня масла (масловозвратная трубка)

Третья ступень. Маслоотделитель (эффективность отделения масла 92%)

Четвертая ступень. Маслоуравнивающая трубка между компрессорами


Пятая ступень. Маслоуравнивающая трубка

Шестая ступень.

Технология интеллектуального масловозврата

Новая компоновка наружного блока

CMV-//	СМУ-Х
•	•

- Все основные компоненты находятся рядом с сервисным люком, что делает систему удобной для обслуживания и ремонта.
- Благодаря новой системе баланса отсутствует газоуравнивающая трубка, соответственно снизилось число паек и риск утечки хладагента.

Использование двухжильного экранированного сигнального кабеля

- Уменьшает объем работ, выполняемых вручную.
- Снижает затраты на монтаж и пусконаладку.

Простота монтажа

- Компактные размеры
 наружных блоков позволяют доставить их на крышу здания на лифте.
- Длина линии связи до 1000 м.

Комплект для диагностики Doctor Kit

Мощный инструмент в помощь сервисным службам

Комплект для диагностики предназначен для упрощения пусконаладочных работ и сервисного обслуживания мультизональных систем кондиционирования СМV. Он позволяет проводить мониторинг рабочих параметров системы, опираясь на эти данные, строить графики, диагностировать неисправности, автоматически осуществлять резервное копирование данных. С его помощью сервисный специалист сможет быстро и корректно выявить причины неисправностей.

Удобство в эксплуатации

- В набор для диагностики входит: 1 CD с программным обеспечением и USBконвертер для RS485.
- Программное обеспечение имеет дружелюбный графический интерфейс.

Поиск и устранение неисправностей

- При возникновении неисправностей можно воспользоваться инструкцией по их устранению, которая включена в состав программы для диагностики.
- Эту инструкцию также можно распечатать для пошагового решения проблем.

Полезные инструменты

- Программа рассчитает необходимую для заправки массу хладагента на основе диаметра жидкостной линии и ее диаметра.
- Количество заправленного хладагента может быть отражено во всех последующих расчетах.
- Во время дозаправки может отслеживаться давление нагнетания компрессора.

Построение графиков рабочих параметров

- Рабочие параметры системы кондиционирования отображаются в режиме реального времени в виде графиков.
- Результаты мониторинга могут быть представлены в форме отчетов.

Мониторинг основных параметров системы

- Можно использовать компьютер для отслеживания состояния системы и считывания ошибок.
- В режиме реального времени возможен мониторинг параметров работы компрессора, расширительных клапанов, а также снятие данных с температурных датчиков.

Автоматическое резервное копирование данных

- Все рабочие параметры автоматически сохраняются на жестком диске.
 Файл с данными может быть легко экспортирован из программы.
- В случае возникновения сбоев и неисправностей пользователь сможет отправить эти данные в сервисный центр Chigo, где инженеры их изучат и подскажут решение проблемы.

Наружные блоки CMV-II Возможные комбинации мультизональной системы

Холодопроизводи- тельность			1	Максимальное количество			
HP	кВт	8 HP	10 HP	12 HP	14 HP	16 HP	внутренних блоков
8	25,2	0					13
10	28,0		0				16
12	33,5			0			16
14	40,0				0		16
16	45,0					0	20
18	53,2	0	0				20
20	56,0		00				24
22	61,5		0	0			24
24	68,0		0		0		28
26	73,0		0			0	28
28	78,5			0		0	28
30	85,0				0	0	32
32	90,0					00	32
34	96,0		00		0		36
36	101,0		00			0	36
38	106,5		0	0		0	36
40	113,0		0		0	0	42
42	118,0		0			00	42
44	123,5			0		00	42
46	130,0				0	00	48
48	135,0					000	48
50	143,2	0	0			00	54
52	146,0		00			00	54
54	151,5		0	0		00	54
56	158,0		0		0	00	58
58	163,0		0			000	58
60	168,5			0		000	58
62	175,0				0	000	64
64	180,0					0000	64

Спецификация наружных блоков мультизональных систем CMV-II

			Базо	овые блоки					
	HP		8	10	12	14	16		
	Модель		CMV- V252W/ ZR1-B	CMV- V280W/ ZR1-B	CMV- V335W/ ZR1-B	CMV- V400W/ ZR1-B	CMV- V450W/ ZR1-B		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	юе количество блоков	под-	13	16	16	16	20		
Охлажде-	Мощность	кВт	25,2	28,0	33,5	40,0	45,0		
ние	Потребляе- мая мощ- ность	кВт	5,8	7,35	8,73	11,70	13,90		
	EER	_	4,32	3,80	3,83	3,41	3,23		
Обогрев	Мощность	кВт	27,4	31,5	37,5	45,0	50,0		
	Потребляе- мая мощ- ность	кВт	6,09	7,54	8,81	11,36	13,33		
	COP	_	4,49	4,17	4,25	3,96	3,75		
Дипазон	Охлаждение	°C	- 5+50	- 5+50	- 5+50	- 5+50	- 5+50		
рабочих температур	Обогрев	°C	– 20+27	–20+27	– 20+27	-20+27	-20+27		
Компрес-	Количество		2	2	2	3	3		
сор	Тип		Спиральный герметичный						
Хладагент	Тип		R410A						
	Дросселирова	Дросселирование		ЭРВ					
	Заправка	КГ	10	10	12	15	15		
Вентиля-	Двигатель	ı	Бесщеточный, постоянного тока						
тор	Количество		1	1	2	2	2		
	Свободный статический напор	Па	85	85	85	85	85		
Габариты	Блок	ММ	974×16	18×766	1264×1618×766				
(Д×В×Г)	Упаковка	ММ	1 030×1	750×825	1315×1750×825				
Bec		КГ	230	230	260	310	310		
Уровень зву ления	кового дав-	дБ(А)	58	58	58	60	60		
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø12,7	Ø12,7	Ø12,7	Ø15,9	Ø15,9		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø 22,2	Ø 25, 4	Ø28,6	Ø28,6	Ø28,6		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø12,7	Ø12,7	Ø15,9	Ø15,9	Ø15,9		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø 25,4	Ø 25,4	Ø28,6	Ø31,8	Ø31,8		
Труба вырак уровня масл		ММ	_	_	_	_	_		

			Комбинация и	з двух блоков				
	HP		18 (8+10)	20 (10+10)	22 (10+12)	24 (10+14)		
Модель			CMV- V532W/ ZR1-B	CMV- V560W/ ZR1-B	CMV- V615W/ ZR1-B	CMV- V680W/ ZR1-B		
Комплект дл модулей	ія объединения	1	SP-FQG-W2A	SP-FQG-W2A	SP-FQG-W2A	SP-FQG-W2A		
Электропитание В/ф/Гц			380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	ое количество блоков	под-	20	24	24	28		
Охлажде-	Мощность	кВт	53,2	56,0	61,5	68,0		
ние	Потребляе- мая мощ- ность	кВт	13,18	14,70	16,08	19,05		
	EER	_	4,03	3,80	3,82	3,56		
Обогрев	Мощность	кВт	58,9	63,0	69,0	76,5		
	Потребляе- мая мощ- ность	кВт	13,63	15,08	16,35	18,90		
	COP	_	4,32	4,17	4,22	4,04		
Дипазон	Охлаждение	°C	- 5+50	- 5+50	- 5+50	- 5+50		
рабочих температур	Обогрев	°C	-20+27	– 20+27	– 20+27	– 20+27		
Компрес-	Количество		2+2	2+2	2+2	2+3		
сор	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирование		ЭРВ					
	Заправка	КГ	10+10	10+10	10+12	10+15		
Вентиля-	Двигатель		Бесщеточный, постоянного тока					
тор	Количество		1+1	1+1	1+2	1+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	460	460	490	540		
Уровень зву ления	кового дав-	дБ(А)	61	61	62	62		
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø15,9	Ø15,9	Ø15,9	Ø15,9		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø31,8	Ø31,8	Ø31,8	Ø31,8		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø31,8	Ø31,8	Ø31,8	Ø34,9		
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

Электропитание В/ф/Гц 380~415/3/50 380~415/				Комбинация и	з двух блоков					
Non-rect для объединения SP-FOG-W2A		HP								
Одупей		Модель		V730W/	V785W/	V850W/	V900W/			
Максимальное количество под-ключаемых олоков 28 28 32 32 Обогрев мая моц- ность кВт 73,0 78,5 85,0 90,0 Обогрев мая моц- ность кВт 21,25 22,63 25,60 27,80 Обогрев мая моц- ность кВт 81,5 87,5 95,0 100,0 Потребляе- мая моц- ность кВт 20,87 22,14 24,69 26,66 СОР — 3,90 3,95 3,84 3,75 Дипазон рабочих температур °C -5+50 -5+50 -5+50 -5+50 Обогрев °C -20+27 —20.		тя объединения	1	SP-FQG-W2A	SP-FQG-W2A	SP-FQG-W2A	SP-FQG-W2A			
Ключаемых блоков 20 26 32 32 Охлаждение Мощность потребляемая мощность ная мощность ность кВт 73.0 78,5 85,0 90,0 Потребляемая мощность ная мощность ность кВт 21,25 22,63 25,60 27,80 Обогрев мая мощность ность кВт 81,5 87,5 95,0 100,0 Дилазон ность кВт 20,87 22,14 24,69 26,66 Дилазон ность СОР — 3,90 3,95 3,84 3,75 Дилазон рабочих температур °C -5+50 -5+50 -5+50 -5+50 Обогрев °C -20+27 -20.	Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50			
ние			под-	28	28	32	32			
Потребляемая моц- мость КВТ 21,25 22,63 25,60 27,80	Охлажде-	Мощность	кВт	73,0	78,5	85,0	90,0			
Обогрев Мощность потребляемая мощность пость пос	ние	мая мощ-	кВт	21,25	22,63	25,60	27,80			
Потребляемая мощность ость на постьем вали мощность ость ость ость ость ость ость ость		EER	_	3,43	3,46	3,32	3,23			
мая мощ- ность кВт ность 20,87 22,14 24,69 26,66 СОР — 3,90 3,95 3,84 3,75 Дипазон рабочих температур Обогрев °C —5+50 —5.	Обогрев	Мощность	кВт	81,5	87,5	95,0	100,0			
Дипазон рабочих температур		мая мощ-	кВт	20,87	22,14	24,69	26,66			
рабочих температур		COP	_	3,90	3,95	3,84	3,75			
температур Обогрев °C —20+27 —2		Охлаждение	°C	− 5+50	-5+50	- 5+50	- 5+50			
Сор Тип Спиральный герметичный Хладагент Тип R410A Дросселирование 3PB Заправка кг 10+15 12+15 15+15 15+15 Вентилятор Двигатель Бесщеточный, постоянного тока Количество 1+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 Вес кг 540 570 620 620 Уровень звукового давления дБ(A) 62 63 63 63 Загрузка наружного бло-ка внутренними блоками % 50–130 50–130 50–130 50–130 50–130 Суммарная эквиванан тная длина трубы мм Ø19,1 Ø		Обогрев	°C	-20+27	-20+27	-20+27	-20+27			
Спиральный герметичный Хладагент Тип R410A Дросселирование ЭРВ Заправка кг 10+15 12+15 15+15 15+15 Вентилятор Двигатель Бесщеточный, постоянного тока Количество 1+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 Вес кг 540 570 620 620 Уровень звукового давления дБ(A) 62 63 63 63 Загрузка наружного блока внутренними блоками % 50–130 50–130 50–130 50–130 Суммарная эквиванентная длина трубогогорода < 90 м	Компрес-	Количество		2+3	2+3	3+3	3+3			
Дросселирование 3PB Заправка кг 10+15 12+15 15+15 15+15 Вентилятор Двигатель Бесщеточный, постоянного тока Количество 1+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 85 Вес кг 540 570 620 620 Уровень звукового давления ДБ(A) 62 63 63 63 63 Загрузка наружного блока внутренними блоками 50−130 50−130 50−130 Суммарная эквивалентная длина трубопровода < 90 м Диаметр жидкостной трубы Диаметр газовой трубы Диаметр газовой трубы Диаметр газовой трубы Диаметр газовой трубы Мм Ø38,1 Ø38,1 Ø38,1 Ø38,1	cop	Тип	Тип		Спиральный	герметичный				
Вентилятор Двигатель Бесщеточный, постоянного тока Количество 1+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 85 Вес кг 540 570 620 620 620 Уровень звукового давления дБ(A) 62 63 63 63 Загрузка наружного блока внутренними блоками % 50–130 50–130 50–130 50–130 Суммарная эквивленная длина трубогровода < 90 м	Хладагент	Тип		R410A						
Вентилятор Двигатель Бесщеточный, постоянного тока Количество 1+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 Вес кг 540 570 620 620 Уровень звукового давления дБ(A) 62 63 63 63 Загрузка наружного блока внутренними блоками % 50–130 50–130 50–130 50–130 Суммарная эквивлентная длина трубопровода < 90 м		Дросселирование		ЭРВ						
Тор Количество 1+2 2+2 2+2 2+2 2+2 2+2 Свободный статический напор Па 85 85 85 85 85 85 85 85 85 85 85 85 85		Заправка	КГ	10+15	12+15	15+15	15+15			
Количество 1+2 2+2 <t< td=""><td></td><td>Двигатель</td><td colspan="2">Двигатель</td><td colspan="6">Бесщеточный, постоянного тока</td></t<>		Двигатель	Двигатель		Бесщеточный, постоянного тока					
Вес кг 540 570 620 620 Уровень звукового дав- дБ(A) 62 63 63 63 Загрузка наружного бло- ка внутренними блоками Суммар- ная эквивалентная длина трубопровода < 90 м Суммар- ная эквивалентная длина трубопровода длина трубопровода 2 90 м Диаметр жидкостной трубы мм 234,9 24,9 Диаметр жидкостной трубы мм 234,9 24,9 Диаметр жидкостной трубы мм 234,9 24,9 Диаметр жидкостной трубы мм 222,2 22,2 Диаметр жидкостной трубы мм 238,1 238,1 Труба выравнивания мм 263,5 66,35 (66,35)	тор	Количество		1+2	2+2	2+2	2+2			
Уровень звукового дав- ления дБ(A) 62 63 63 63 Загрузка наружного бло- ка внутренними блоками % 50–130 50–130 50–130 50–130 Суммар- ная экви- валентная длина тру- бопровода < 90 м		статический	Па	85	85	85	85			
Ления ДБ(A) 02 03 03 Загрузка наружного бло-ка внутренними блоками % 50–130 50–130 50–130 Суммарная эквивалентная длина трубопровода < 90 м	Bec		КГ	540	570	620	620			
Ка внутренними блоками % 50−130		кового дав-	дБ(А)	62	63	63	63			
ная эквивалентная длина трубопровода < 90 м			%	50–130	50–130	50–130	50–130			
бопровода < 90 м	ная экви- валентная	жидкостной	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1			
ная эквивалентная длина трубопровода ≥ 90 м жидкостной трубы мм Ø22,2 Ø22,2 Ø22,2 Труба выравнивания мм Ø38,1 Ø38,1 Ø38,1 Труба выравнивания мм Ø6 35 Ø6 35 Ø6 35	бопровода		ММ	Ø34,9	Ø34,9	Ø34,9	Ø34,9			
бопровода ≥ 90 м Диаметр газовой трубы мм Ø38,1 Ø38,1 Ø38,1 Труба выравнивания мм Ø6.35 Ø6.35 Ø6.35	ная экви- валентная	жидкостной	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2			
	бопровода		ММ	Ø38,1	∅38,1	Ø38,1	Ø38,1			
			ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35			

			Комбинация и	із трех блоков				
	HP		34	36	38	40		
		(10+10+14)	(10+10+16)	(10+12+16)	(10+14+16)			
	Модель		CMV- V960W/ ZR1-B	CMV- V1010W/ ZR1-B	CMV- V1065W/ ZR1-B	CMV- V1130W/ ZR1-B		
Комплект дл модулей	ıя объединения	1	SP-FQG-W3A	SP-FQG-W3A	SP-FQG-W3A	SP-FQG-W3A		
Электропитание В/ф/Гц			380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	юе количество блоков	под-	36	36	36	42		
Охлажде-	Мощность	кВт	96,0	101,0	106,5	113,0		
ние	Потребляе- мая мощ- ность	кВт	26,40	28,60	29,98	32,95		
	EER	_	3,63	3,53	3,55	3,42		
Обогрев	Мощность	кВт	108,0	113,0	119,0	126,5		
	Потребляе- мая мощ- ность	кВт	26,44	28,41	29,68	32,23		
	COP	_	4,08	3,97	4,00	3,92		
Дипазон	Охлаждение	°C	-5+50	-5+50	-5+50	-5+50		
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27		
Компрес-	Количество		2+2+3	2+2+3	2+2+3	2+3+3		
cop	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирова	ание	ЭРВ					
	Заправка	КГ	10+10+15	10+10+15	10+12+15	10+15+15		
Вентиля- тор	Двигатель		Бесщеточный, постоянного тока					
ТОР	Количество		1+1+2	1+1+2	1+2+2	1+2+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	770	770	800	850		
Уровень зву ления	кового дав-	дБ(А)	64	64	64	64		
Загрузка на ка внутренн	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
Труба вырав		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

Электропитание В/ф/Гц 380~415/3/50 380~415/50 380~415/3/50 380~415/3/50 380~415/3/50 380~415/3/50 380~415/3				Комбинация и	із трех блоков				
Комплект для объединения модулей SP.FQG.W3A SP.FQG.W3A<		HP							
модулей		Модель		V1180W/	V1235W/	V1300W/	V1350W/		
Максимальное количество под- оглежденомых блоков Мощность кВт 118,0 123,5 130,0 135,0 Потребляе- мая мощ- мость кВт 35,15 36,53 39,50 41,70 ВЕР — 3,35 3,38 3,29 3,23 Обогрев Мощность кВт 131,5 137,5 145,0 150,0 Потребляе- мая мощ- мость кВт 34,20 35,47 38,02 39,99 Осогре — 3,84 3,87 3,81 3,75 Осогре — 5,+50 -5,+50 -5,+50 -5,+50 Обогрев °C -20,+27 -20,+27 -20,+27 -20,+27 Компрес- оор Тип В410A Дросселирование Заправка кг 10+15+15 12+15+15 15+15+15 Вентиля- гор Двигатель Бесшеточный, постоянного тока Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический па 85 85 85 Вес кг 850 880 930 950 Осуммар- мая обы заружного бло- ка внутренними блоками Осуммар- панния видоктной мм 219,1 219,1 219,1 Осуммар- мая окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3 Осуммар- пання окы заркового да обой трубы мм 241,3 241,3 241,3 241,3	Комплект дл модулей	ія объединения	1	SP-FQG-W3A	SP-FQG-W3A	SP-FQG-W3A	SP-FQG-W3A		
Облавжде- Мощность кВт 118,0 123,5 130,0 135,0 Потребляе- мая мощ- ность кВт 35,15 36,53 39,50 41,70 ЕЕР — 3,35 3,38 3,29 3,23 Обогрев Мощность кВт 131,5 137,5 145,0 150,0 Потребляе- мая мощ- ность кВт 34,20 35,47 38,02 39,99 Обогрев ССР — 3,84 3,87 3,81 3,75 СОР — 3,84 3,87 3,81 3,75 Обогрев °C -5+50 -5+50 -5+50 Обогрев °C -20+27 -20+27 -20+27 СООбогрев °C -20+27 -20+27 -20+27 Тип Спиральный герметичный Хладагент Тип R410A Дросселирование 3PB Заправка кг 10+15+15 12+15+15 15+15+15 15+15+15 Вентиля- Пор Количество 1+2+2 2+2+2 2+2+2 Свободный статический напор Вес кг 850 880 930 950 Урозень звукового дав- пения Загрузка наружного бло- ка внутренними блоками Суммар- ная якви- налор Мамарт Ра- зовой трубы мм 241,3 241,3 241,3 241,3 Диаметр Ра- зовой трубы мм 241,3 241,3 241,3 241,3 Пруба выравнивания	Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Потребляемая мощ- ность ЕЕЯ — 3,35 35,15 137,5 145,0 150,0 Потребляемая мощ- ность КВТ 131,5 137,5 145,0 150,0 Потребляемая мощ- ность СОР — 3,84 3,87 3,81 3,75 Дипазон- рабочих гемператур Компрес- Обогрев °C −20+27 −20+27 −20+27 −20+27 Сорр Тип Спиральный герметичный Кладагент Тип В410A Дросселирование Заправка кг 10+15+15 12+15+15 15+15+15 Вентиля- Тор Комичество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический па 85 85 85 Вес кг 850 880 930 950 Кровень звукового дав- пения Загрузка наружного бло- ка внутренними блоками Суммар- ная экви- валентная длина тру- жидкостной трубы Диаметр га- зовой трубы Диаметр га- доска теме теме теме теме теме теме теме тем			под-	42	42	48	48		
Потребляемамощность кВт 35,15 36,53 39,50 41,70	Охлажде-	Мощность	кВт	118,0	123,5	130,0	135,0		
Обогрев Мощность кВт 131,5 137,5 145,0 150,0 Потребляемая мощность кВт 34,20 35,47 38,02 39,99 ность осор СОР — 3,84 3,87 3,81 3,75 Обогрев °C −5+50 −5+50 −5+50 −5+50 Обогрев °C −20+27 −20+27 −20+27 −20+27 −20+27	ние	мая мощ-	кВт	35,15	36,53	39,50	41,70		
Потребляемая мощ- мость СОР — 3,84 3,87 3,81 3,75 Дипазон рабочих регинирование °C -5+50 -5+50 -5+50 Обогрев °C -20+27 -20+27 -20+27 -20+27 Компрес- рор Тип Спиральный герметичный Кладагент Пип ВА10А Дросселирование ЭРВ Заправка кг 10+15+15 12+15+15 15+15+15 15+15+15 Вентиля- Пор Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический напор Вес кг 850 880 930 950 Куровень звукового давления ДБА) 64 64 64 64 Загружка наружного блова внутренними блоками сружная внутренними блоками грубогоровода 9 0м внутренними блоками грубогоровода 9 0м мм Диаметр газовой трубы мм 241,3		EER	_	3,35	3,38	3,29	3,23		
мая моц- ность кВт 34,20 35,47 38,02 39,99 СОР — 3,84 3,87 3,81 3,75 Дипазон рабочих гемператур Охлаждение °C —5+50 —5+50 —5+50 Обогрев °C —20+27 —20+27 —20+27 —20+27 Компресворор Количество 2+3+3 2+3+3 3+3+3 3+3+3 Тип Па Ветимператичный Ветимператичный Ветимператичный Па Вентилянор Двигатель Бесщеточный, постоянного тока Бесщеточный, постоянного тока Весшеточный, постоянного тока Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический напор Па 85 85 85 Вес кг 850 880 930 950 Уровень звукового дав- пения дБ(A) 64 64 64 64 Загрузка наружного бло- ка внутренними блоками Диматет ра- зовой трубы ммм Ø19,1 Ø19,1 Ø19,1	Обогрев	Мощность	кВт	131,5	137,5	145,0	150,0		
Дипазон рабочих гемператур Обогрев °C —5+50 —5+50 —5+50 —5+50 рабочих гемператур Обогрев °C —20+27 —		мая мощ-	кВт	34,20	35,47	38,02	39,99		
обогуровень звукового дав- пения Ввес кг 850 880 930 950 Коровень звукового дав- пения Ввес кг 850 880 930 950 Уровень звукового дав- пения Вагрузка наружного бло- ка внутренними блоками Суммар- ная экви- валентная длина тру- богоровода 2 90 м Диаметр газовой трубы		COP	_	3,84	3,87	3,81	3,75		
гемператур Обогрев °C —20+27 —20	Дипазон	Охлаждение	°C	-5+50	-5+50	-5+50	- 5+50		
Тип Спиральный герметичный Кладагент Тип В410A Дросселирование Заправка кг 10+15+15 12+15+15 15+15+15 Вентилянор Количество Свободный статический напор Вес Кг 850 880 930 950 Уровень звукового давления Загрузка наружного блока внутренними блоками Суммарлина трубопоровода < 90 м Уробы Диаметр казовой трубы Диаметр жазовой трубы Диаметр жазовой трубы Диаметр жазовой трубы Диаметр казовой трубы	рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27		
Тип В410А Дросселирование ЭРВ Заправка кг 10+15+15 12+15+15 15+15+15 15+15+15 Вентиля- гор Двигатель Бесщеточный, постоянного тока Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический напор Па 85 85 85 85 Вес кг 850 880 930 950 Уровень звукового дав- пения Загрузка наружного бло- ка внутренними блоками б	Компрес-	Количество		2+3+3	2+3+3	3+3+3	3+3+3		
Дросселирование 3PB Заправка кг 10+15+15 12+15+15 15+15+15 15+15+15 Вентиля- гор Двигатель Бесщеточный, постоянного тока Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свобдный статический напор Па 85 85 85 85 Вес кг 850 880 930 950 Уровень звукового дав- пения Загрузка наружного бло- ка внутренними блоками Суммар- ная экви- валентная прина тру- бопоровода 90 м 20 91,1 201,	сор	Тип		Спиральный герметичный					
Вентиля-гор Двигатель Бесщеточный, постоянного тока Вентиля-гор Двигатель Бесщеточный, постоянного тока Количество 1+2+2 2+2+2 2+2+2 2+2+2 Свободный статический напор Па 85 85 85 85 Вес кг 850 880 930 950 950 Уровень звукового дав-пенняя звильалентная длина трубопровода с 90 м Диаметр жидкостной трубы мм 64 64 64 64 Суммарная эквиналентная длина трубопровода с 90 м Диаметр жидкостной трубы мм 241,3 241,3 241,3 241,3 Суммарная эквиналентная длина трубопровода с 90 м Диаметр жидкостной трубы мм 22,2 22,2 22,2 22,2 22,2 Диаметр жидкостной трубы длина трубопровода с 90 м Диаметр газовой трубы мм 241,3 241,3 241,3 241,3 241,3 Труба выравнивания ММ 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,35 26,3	Хладагент	Тип		R410A					
Вентиля- гор Двигатель Количество Свободный статический напор Вес Кг 850 880 930 950 Уровень звукового дав- пения Загрузка наружного бло- ка внутренними блоками Суммар- ная экви- далентная плина тру- бопровода 290 м Суммар- ная экви- далентная плина тру- бопровода 290 м Суммар- ная экви- далентная плина тру- бопоровода 290 м Суммар- ная экви- далентная плина тру- бопоровода 290 м Суммар- ная экви- далентная разовой трубы Диаметр жидкостной трубы Диаметр газовой трубы Диаметр		Дросселирование		ЭРВ					
Количество Свободный статический напор Вес кг 850 880 930 950 Уровень звукового дав-пения Загрузка наружного блока в внутренними блоками Суммарная эквивалентная длина трубопровода < 90 м Оуммарная эквивалентная трубопровода < 90 м Диаметр жидкостной трубы Диаметр зовой трубы Диаметр зовой трубы Диаметр газовой трубы		Заправка	КГ	10+15+15	12+15+15	15+15+15	15+15+15		
Количество Свободный статический напор Вес Уровень звукового дав-пения Загрузка наружного блока внутренними блоками Суммарная эквиванентная длина трубопровода < 90 м м м м м м м м м м м м м м м м м м	Вентиля-	Двигатель		Бесщеточный, постоянного тока					
Вес кг 850 880 930 950 Уровень звукового дав- пения Загрузка наружного бло- ка внутренними блоками Суммар- ная экви- разовой трубы Диаметр жидкостной трубы Диаметр казовой трубы Диаметр жидкостной трубы Диаметр казовой трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр газовой трубы Диаметр жидкостной трубы Диаметр кидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр кидкостной трубы Диаметр жидкостной трубы Диаметр жидкостной трубы Диаметр кидкостной т	тор	Количество		1+2+2	2+2+2	2+2+2	2+2+2		
Уровень звукового дав- пения ДБ(A) 64 64 64 64 64 64 64 64 64 6		статический	Па	85	85	85	85		
Пения ДВ(А) 04 04 04 04 04 04 04 04 04 04 04 04 04	Bec		КГ	850	880	930	950		
Ка внутренними блоками Суммар- ная экви- валентная пру- бопровода < 90 м Суммар- ная экви- валентная зовой трубы Диаметр газовой трубы Диаметр жидкостной трубы Диаметр газовой трубы Диаметр жидкостной трубы Диаметр казовой трубы Диаметр жидкостной трубы Диаметр газовой трубы Диаметр казовой тр	Уровень зву ления	кового дав-	дБ(А)	64	64	64	64		
ная экви- валентная длина тру- бопровода < 90 м			%	50–130	50–130	50–130	50–130		
бопровода < 90 м	Суммар- ная экви- валентная	жидкостной	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1		
ная экви- валентная длина тру- бопровода ≥ 90 м	длина тру- бопровода < 90 м		ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
бопровода ≥ 90 м Диаметр га- зовой трубы мм Ø41,3 Ø41,3 Ø41,3 Ø41,3 Труба выравнивания мм Ø6.35 Ø6.35 Ø6.35	Суммар- ная экви- валентная	жидкостной	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2		
	длина тру- бопровода ≥ 90 м		ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
			ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

			Комбинация из	четырех блоков				
НР			50 (8+10+16+16)	52 (10+10+16+16)	54 (10+12+16+16)	56 (10+14+16+16)		
	Модель		CMV- V1432W/ ZR1-B	CMV- V1460W/ ZR1-B	CMV- V1515W/ ZR1-B	CMV- V1580W/ ZR1-B		
Комплект дл модулей	тя объединения	1	SP-FQG-W4A	SP-FQG-W4A	SP-FQG-W4A	SP-FQG-W4A		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	юе количество блоков	под-	54	54	54	58		
Охлажде-	Мощность	кВт	143,2	146,0	151,5	158,0		
ние	Потребляе- мая мощ- ность	кВт	40,98	42,50	43,88	46,85		
	EER	_	3,49	3,43	3,45	3,37		
Обогрев	Мощность	кВт	158,9	163,0	169,0	176,5		
	Потребляе- мая мощ- ность	кВт	40,29	41,74	43,01	45,56		
	COP	_	3,94	3,90	3,92	3,87		
Дипазон	Охлаждение	°C	-5+50	-5+50	− 5+50	− 5+50		
рабочих температур	Обогрев	°C	-20+27	<i>–</i> 20+27	− 20+27	− 20+27		
Компрес-	Количество		2+2+3+3	2+2+3+3	2+2+3+3	2+3+3+3		
сор	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирование		ЭРВ					
	Заправка	КГ	10+10+15+15	10+10+15+15	10+12+15+15	10+15+15+15		
Вентиля-	Двигатель		Бесщеточный, постоянного тока					
тор	Количество		1+1+2+2	1+1+2+2	1+2+2+2	1+2+2+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	1 080	1 080	1110	1160		
Уровень зву ления	кового дав-	дБ(А)	65	65	65	65		
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø25,4	Ø25,4	Ø25,4	Ø25,4		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5		
Труба вырав		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

			Комбинация из	четырех блоков					
	HP		58 (10+16+16+16)	60 (12+16+16+16)	62 (14+16+16+16)	64 (16+16+16+16)			
Модель		CMV- V1630W/ ZR1-B	CMV- V1685W/ ZR1-B	CMV- V1750W/ ZR1-B	CMV- V1800W/ ZR1-B				
Комплект дл модулей	тя объединения	I	SP-FQG-W4A	SP-FQG-W4A	SP-FQG-W4A	SP-FQG-W4A			
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50			
Максимальн ключаемых	юе количество блоков	под-	58	58	64	64			
Охлажде-	Мощность	кВт	163,0	168,5	175,0	180,0			
ние	Потребляе- мая мощ- ность	кВт	49,05	50,43	53,40	55,60			
	EER	_	3,32	3,34	3,27	3,23			
Обогрев	Мощность	кВт	181,5	187,5	195,0	200,0			
	Потребляе- мая мощ- ность	кВт	47,53	48,80	51,35	53,32			
	COP	_	3,81	3,84	3,79	3,75			
Дипазон	Охлаждение	°C	- 5+50	- 5+50	- 5+50	- 5+50			
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27			
Компрес-	Количество		2+3+3+3	2+3+3+3	3+3+3+3	3+3+3+3			
cop	Тип			Спиральный	герметичный				
Хладагент	Тип		R410A						
	Дросселирова	Дросселирование		ЭРВ					
	Заправка	КГ	10+15+15+15	12+15+15+15	15+15+15+15	15+15+15+15			
Вентиля-	Двигатель		Бесщеточный, постоянного тока						
тор	Количество		1+2+2+2	2+2+2+2	2+2+2+2	2+2+2+2			
	Свободный статический напор	Па	85	85	85	85			
Bec		КГ	1 160	1 190	1 240	1 240			
Уровень зву ления	кового дав-	дБ(А)	65	65	65	65			
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130			
Суммар- ная экви- валентная длина тру- бопровода < 90 м Суммар- ная экви- валентная длина тру- бопровода ≥ 90 м	Диаметр жидкостной линии	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2			
	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5			
	Диаметр жидкостной линии	ММ	Ø25,4	Ø25,4	Ø25,4	Ø25,4			
	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5			
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35			

Примечание

Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 $^{\circ}$ C; температура внутри помещения по сухому термометру 27 $^{\circ}$ C, по влажному термометру 19 $^{\circ}$ C. Режим обогрева: наружная температура 7 $^{\circ}$ C; температура внутри помещения по сухому термометру 20 $^{\circ}$ C.

Наружные блоки CMV-X Возможные комбинации мультизональной системы

Холодопроизво- дительность			Максимальное количество						
HP	кВт	8 HP	10 HP	12 HP	14 HP	16 HP	18 HP	_ внутренних блоков	
8	25,2	0						13	
10	28,0		0					16	
12	33,5			0				16	
14	40,0				0			20	
16	45,0					0		20	
18	53,2						0	20	
20	56,0		00					24	
22	61,5		0	0				24	
24	68,0		0		0			28	
26	73,0		0			0		28	
28	78,5			0		0		28	
30	85,0				0	0		32	
32	90,0					00		32	
34	96,0					0	0	36	
36	101,0						00	36	
38	106,5		0	0		0		36	
40	113,0		0		0	0		42	
42	118,0		0			00		42	
44	123,5			0		00		42	
46	130,0				0	00		48	
48	135,0					000		48	
50	143,2					00	0	54	
52	146,0					0	00	54	
54	151,5						000	54	
56	158,0		0		0	00		58	
58	163,0		0			000		58	
60	168,5			0		000		58	
62	175,0				0	000		64	
64	180,0					0000		64	
66	185,0					000	0	64	
68	190,0					00	00	64	
70	195,0					0	000	64	
72	200,0						0000	64	

Спецификация наружных блоков мультизональных систем CMV-X

			Ба	азовые блон	КИ			
	HP		8	10	12	14	16	18
	Модель		CMV- D252W/ ZR1-B	CMV- D280W/ ZR1-B	CMV- D335W/ ZR1-B	CMV- D400W/ ZR1-B	CMV- D450W/ ZR1-B	CMV- D500W/ ZR1-B
Электропитание В/ф/Гц								
Максимальное количество под- ключаемых блоков			13	16	16	16	20	20
Охлажде-	Мощность	кВт	25,2	28,0	33,5	40,0	45,0	50,0
ние	Потребляе- мая мощ- ность	кВт	5,79	6,93	8,48	10,58	12,71	14,3
	EER	_	4,35	4,04	3,95	3,78	3,54	3,46
Обогрев	Мощность	кВт	27,4	31,5	37,5	45,0	50,0	56,0
	Потребляе- мая мощ- ность	кВт	5,88	7,19	8,80	10,98	12,44	14,14
	COP	_	4,66	4,38	4,26	4,10	4,02	3,96
Дилазон	Охлаждение	°C	-5+50	- 5+50	- 5+50	-5+50	-5+50	-5+50
рабочих температур	Обогрев	°C	-20+30	-20+30	-20+30	-20+30	-20+30	-20+30
Компрес-	Количество	,	1	1	1	2	2	2
сор	Тип							
Хладагент	Тип							
	Дросселирование							
	Заправка	КГ	10	10	12	16	16	16
Вентиля-	Двигатель							
тор	Количество		1	1	2	2	2	2
	Свободный статический напор	Па	85	85	85	85	85	85
Габариты	Блок	ММ	970×16	20×765	1260×1620×765			
(Д×В×Г)	Упаковка мм		1 030×1 750×825					
Bec		КГ	208	208	242	286	286	314
Уровень звукового дав- ления		дБ(А)	58	58	58	60	60	60
Загрузка наружного бло- ка внутренними блоками		%	50–130	50–130	50–130	50–130	50–130	50–130
Суммар- ная экви- валентная длина тру- бопровода < 90 м Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø12,7	Ø12,7	Ø12,7	Ø15,9	Ø15,9	Ø15,9
	Диаметр га- зовой линии	ММ	Ø22,2	Ø25,4	Ø28,6	Ø28,6	Ø28,6	Ø31,8
	Диаметр жидкостной линии	ММ	Ø12,7	Ø12,7	Ø15,9	Ø15,9	Ø15,9	Ø19,05
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø25,4	Ø25,4	Ø28,6	Ø31,8	Ø31,8	Ø31,8
Труба выравнивания уровня масла		ММ	_	_	_	_	_	_

			Комбинаци	ия из двух бло	КОВ			
	HP		20 (10+10)	22 (10+12)	24 (10+14)	26 (10+16)	28 (12+16)	
	Модель		CMV- D560W/ ZR1-B	CMV- D615W/ ZR1-B	CMV- D680W/ ZR1-B	CMV- D730W/ ZR1-B	CMV- D785W/ ZR1-B	
Комплект дл модулей	ія объединения	1	SP-FQG- W2B	SP-FQG- W2B	SP-FQG- W2B	SP-FQG- W2B	SP-FQG- W2B	
Электропита	ание	В/ф/Гц			380~415/3/50	,	1	
Максимальн ключаемых	ое количество блоков	под-	24	24	28	28	28	
Охлажде-	Мощность	кВт	56,0	61,5	68,0	73,0	78,5	
ние	Потребляе- мая мощ- ность	кВт	13,86	15,41	17,51	19,64	21,19	
	EER	_	4,04	3,99	3,88	3,72	3,70	
Обогрев	Мощность	кВт	63,0	69,0	76,5	81,5	87,5	
	Потребляе- мая мощ- ность	кВт	14,38	15,99	18,17	19,63	21,24	
	COP	_	4,38	4,31	4,21	4,15	4,12	
Дипазон	Охлаждение	°C	-5+50	-5+50	- 5+50	-5+50	-5+50	
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27	-20+27	
Компрес-	Количество		1+1	1+1	1+2	1+2	1+2	
сор	Тип			Спира	льный гермети	1ЧНЫЙ		
Хладагент	Тип		R410A					
	Дросселирова	ание	ЭРВ					
	Заправка	КГ	10+10	10+12	10+16	10+16	12+16	
Вентиля-	Двигатель		DC-инверторный					
тор	Количество		1+1	1+2	1+2	1+2	2+2	
	Свободный статический напор	Па	85	85	85	85	85	
Bec		КГ	406	450	494	494	528	
Уровень зву ления	кового дав-	дБ(А)	61	62	62	62	63	
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130	50–130	
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø15,9	Ø15,9	Ø15,9	Ø19,1	Ø19,1	
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø31,8	Ø31,8	Ø34,9	Ø34,9	Ø34,9	
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø19,1	Ø19,1	Ø19,1	Ø22,2	Ø22,2	
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø31,8	Ø31,8	Ø38,1	Ø38,1	Ø38,1	
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35	Ø6,35	

			Комбинация и	із двух блоков				
HP			30 (14+16)	32 (16+16)	34 (16+18)	36 (18+18)		
	Модель		CMV- D850W/ ZR1-B	CMV- D900W/ ZR1-B	CMV- D960W/ ZR1-B	CMV- D1010W/ ZR1-B		
Комплект дл модулей	ıя объединения	1	SP-FQG-W2B	SP-FQG-W2B	SP-FQG-W2B	SP-FQG-W2B		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	ое количество блоков	под-	32	32	36	36		
Охлажде-	Мощность	кВт	85,0	90,0	96,0	101,0		
ние	Потребляе- мая мощ- ность	кВт	23,29	25,42	27,16	28,90		
	EER	_	3,65	3,54	3,53	3,49		
Обогрев	Мощность	кВт	95,0	100,0	108,0	113,0		
	Потребляе- мая мощ- ность	кВт	23,41	24,88	26,58	28,28		
	COP	_	4,06	4,02	4,06	4,00		
Дипазон	Охлаждение	°C	-5+50	-5+50	-5+50	- 5+50		
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27		
Компрес-	Количество		2+2	2+2	2+2	2+2		
сор	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирова	ание	ЭРВ					
	Заправка	КГ	16+16	16+16	16+16	16+16		
Вентиля-	Двигатель		DC-инверторный					
тор	Количество		2+2	2+2	2+2	2+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	572	572	600	628		
Уровень зву ления	кового дав-	дБ(А)	63	63	63	63		
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1		
длина тру- бопровода < 90 м	Диаметр га- зовой трубы	ММ	Ø34,9	Ø34,9	Ø41,3	Ø41,3		
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой трубы	ММ	Ø38,1	Ø38,1	Ø41,3	Ø41,3		
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		
At a second								

			Комбинация и	із трех блоков				
	HP		38	40	42	44		
			(10+12+16)	(10+14+16)	(10+16+16)	(12+16+16)		
	Модель		CMV- D1065W/ ZR1-B	CMV- D1130W/ ZR1-B	CMV- D1180W/ ZR1-B	CMV- D1235W/ ZR1-B		
Комплект дл модулей	тя объединения	1	SP-FQG-W3B	SP-FQG-W3B	SP-FQG-W3B	SP-FQG-W3B		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	юе количество блоков	под-	36	42	42	42		
Охлажде-	Мощность	кВт	106,5	113,0	118,0	123,5		
ние	Потребляе- мая мощ- ность	кВт	28,12	30,22	32,35	33,90		
	EER	_	3,79	3,74	3,65	3,64		
Обогрев	Мощность	кВт	119,0	126,5	131,5	137,5		
	Потребляе- мая мощ- ность	кВт	28,43	30,61	32,07	33,68		
	COP		4,19	4,13	4,10	4,08		
Дипазон	Охлаждение	°C	- 5+50	- 5+50	- 5+50	- 5+50		
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27		
Компрес-	Количество		1+1+2	1+2+2	1+2+2	1+2+2		
cop	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирова	ание		ЭРВ				
	Заправка	КГ	10+12+16	10+16+16	10+16+16	12+16+16		
Вентиля- тор	Двигатель		DC-инверторный					
ТОР	Количество		1+2+2	1+2+2	1+2+2	2+2+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	736	780	780	814		
Уровень зву ления	кового дав-	дБ(А)	64	64	64	64		
Загрузка на ка внутренн	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø19,1	Ø19,1	Ø19,1	Ø19,1		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
Суммар- ная экви- валентная длина тру-	Диаметр жидкостной линии	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø41,3	Ø41,3	Ø41,3	Ø41,3		
Труба вырав		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

			Комбинация и	із трех блоков				
	HP		46 (14+16+16)	48 (16+16+16)	50 (16+16+18)	52 (16+18+18)		
	Модель		CMV- D1300W/ ZR1-B	CMV- D1350W/ ZR1-B	CMV- D1432W/ ZR1-B	CMV- D1460W/ ZR1-B		
Комплект дл модулей	ія объединения	1	SP-FQG-W3B	SP-FQG-W3B	SP-FQG-W3B	SP-FQG-W3B		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	ое количество блоков	под-	48	48	54	54		
Охлажде-	Мощность	кВт	130,0	135,0	143,2	146,0		
ние	Потребляе- мая мощ- ность	кВт	36,01	38,14	39,87	41,61		
	EER	_	3,61	3,54	3,59	3,51		
Обогрев	Мощность	кВт	145,0	150,0	158,9	163,0		
	Потребляе- мая мощ- ность	кВт	35,85	37,31	39,02	40,72		
	COP	_	4,04	4,02	4,07	4,00		
Дипазон	Охлаждение	°C	- 5+50	- 5+50	- 5+50	- 5+50		
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27		
Компрес-	Количество	'	2+2+2	2+2+2	2+2+2	2+2+2		
cop	Тип			Спиральный	герметичный			
Хладагент	Тип		R410A					
	Дросселирова	ание	ЭРВ					
	Заправка	КГ	16+16+16	16+16+16	16+16+16	16+16+16		
Вентиля-	Двигатель		DC-инверторный					
тор	Количество		2+2+2	2+2+2	2+2+2	2+2+2		
	Свободный статический напор	Па	85	85	85	85		
Bec		КГ	858	858	886	914		
Уровень зву ления	кового дав-	дБ(А)	64	64	64	64		
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø19,1	Ø19,1	Ø22,2	Ø22,2		
длина тру- бопровода < 90 м	Диаметр га- зовой трубы	ММ	Ø41,3	Ø41,3	Ø44,5	Ø44,5		
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø22,2	Ø22,2	Ø25,4	Ø25,4		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой трубы	ММ	Ø41,3	Ø41,3	Ø44,5	Ø44,5		
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35		

		Ko	мбинация из тре	х и четырех блок	ОВ		
	HP		54 (18+18+18)	56 (10+14+16+16)	58 (10+16+16+16)	60 (12+16+16+16)	
	Модель		CMV- D1515W/ ZR1-B	CMV- D1580W/ ZR1-B	CMV- D1630W/ ZR1-B	CMV- D1685W/ ZR1-B	
Комплект дл модулей	ıя объединения	1	SP-FQG-W3B	SP-FQG-W4B	SP-FQG-W4B	SP-FQG-W4B	
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	380~415/3/50	
Максимальн ключаемых	ое количество блоков	под-	54	58	58	58	
Охлажде-	Мощность	кВт	151,5	158,0	163,0	168,5	
ние	Потребляе- мая мощ- ность	кВт	43,35	42,76	45,07	46,62	
	EER	_	3,49	3,69	3,62	3,61	
Обогрев	Мощность	кВт	169,0	176,5	181,5	187,5	
	Потребляе- мая мощ- ность	кВт	42,42	42,67	44,51	46,12	
СО	COP	_	3,98	4,14	4,08	4,07	
Дипазон	Охлаждение	°C	-5+50	-5+50	-5+50	-5+50	
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	-20+27	
Компрес-	Количество		2+2+2	1+1+2+2	1+2+2+2	1+2+2+2	
сор	Тип			Спиральный	герметичный		
Хладагент	Тип		R410A				
	Дросселирова	ание		ЭРВ			
	Заправка	КГ	16+16+16	10+10+16+16	10+16+16+16	12+16+16+16	
Вентиля-	Двигатель			DC-инве	рторный		
тор	Количество		2+2+2	1+1+2+2	1+2+2+2	2+2+2+2	
	Свободный статический напор	Па	85	85	85	85	
Bec		КГ	942	1 066	1 066	1 100	
Уровень зву ления	кового дав-	дБ(А)	64	65	65	65	
	ружного бло- ими блоками	%	50–130	50–130	50–130	50–130	
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø22,2	Ø22,2	Ø22,2	Ø22,2	
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5	
Суммар- ная экви- валентная длина тру-	Диаметр жидкостной линии	ММ	Ø25,4	Ø25,4	Ø25,4	Ø25,4	
бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5	Ø44,5	
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35	

			Комбинация из четы	рех блоков		
Модель		62 (14+16+16+16)	64 (16+16+16)	66 (16+16+16+18)		
		CMV- D1750W/ ZR1-B	CMV- D1800W/ ZR1-B	CMV- D1835W/ ZR1-B		
Комплект дл модулей	тя объединения	1	SP-FQG-W4B	SP-FQG-W4B	SP-FQG-W4B	
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50	
Максимальн ключаемых	юе количество блоков	под-	64	64	64	
Охлажде-	Мощность	кВт	175,0	180,0	183,5	
ние	Потребляе- мая мощ- ность	кВт	48,72	50,85	52,59	
	EER	_	3,59	3,54	3,49	
Обогрев	Мощность	кВт	195,0	200,0	206,0	
_	Потребляе- мая мощ- ность	кВт	48,29	49,75	51,45	
	COP	_	4,04	4,02	4,00	
Дипазон	Охлаждение	°C	- 5 + 50	-5+50	-5+50	
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27	
Компрес-	Количество		2+2+2+2	2+2+2+2	2+2+2+2	
cop	Тип		(Спиральный герметичны	й	
Хладагент	Тип		R410A			
	Дросселирова	ание	ЭРВ			
	Заправка	КГ	16+16+16+16	16+16+16+16	16+16+16+16	
Вентиля-	Двигатель			DC-инверторный		
тор	Количество		2+2+2+2	2+2+2+2	2+2+2+2	
	Свободный статический напор	Па	85	85	85	
Bec		КГ	1 144	1 144	1172	
Уровень зву ления	кового дав-	дБ(А)	65	65	64	
Загрузка на ка внутренн	ружного бло- ими блоками	%	50–130	50–130	50–130	
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø22,2	Ø22,2	Ø25,4	
длина тру- бопровода < 90 м	Диаметр га- зовой трубы	ММ	Ø44,5	Ø44,5	Ø44,5	
Суммар- ная экви- валентная	Диаметр жидкостной трубы	ММ	Ø25,4	Ø25,4	Ø25,4	
длина тру- бопровода ≥ 90 м	Диаметр га- зовой трубы	ММ	Ø44,5	Ø44,5	Ø54,0	
Труба выравнивания уровня масла мм		ММ	Ø6,35	Ø6,35	Ø6,35	

			Комбинация из четыр	рех блоков			
	HP		68 (16+16+18+18)	70 (16+18+18+18)	72 (18+18+18+18)		
Модель			CMV- D1900W/ ZR1-B	CMV- D1950W/ ZR1-B	CMV- D2000W/ ZR1-B		
Комплект дл модулей	ıя объединения	1	SP-FQG-W4B	SP-FQG-W4B	SP-FQG-W4B		
Электропита	ание	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50		
Максимальн ключаемых	юе количество блоков	под-	64	64	64		
Охлажде-	Мощность	кВт	190,0	195,0	200,0		
ние	Потребляе- мая мощ- ность	кВт	54,33	56,06	57,80		
	EER	_	3,50	3,48	3,46		
Обогрев	Мощность	кВт	212,0	218,0	224,0		
	Потребляе- мая мощ- ность	кВт	53,16	54,86	56,57		
	COP	_	3,99	3,97	3,96		
Дипазон	Охлаждение	°C	- 5+50	- 5 + 50	– 5+50		
рабочих температур	Обогрев	°C	-20+27	-20+27	-20+27		
Компрес-	Количество		2+2+2+2	2+2+2+2	2+2+2+2		
сор	Тип		(Спиральный герметичный	ĭ		
Хладагент	Тип		R410A				
	Дросселирова	ние		ЭРВ			
	Заправка	КГ	16+16+16+16	16+16+16+16	16+16+16+16		
Вентиля-	Двигатель			DC-инверторный			
тор	Количество		2+2+2+2	2+2+2+2	2+2+2+2		
	Свободный статический напор	Па	85	85	85		
Bec		КГ	1 200	1228	1 256		
Уровень зву ления	кового дав-	дБ(А)	64	64	64		
	ружного бло- ими блоками	%	50–130	50–130	50–130		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	∅25,4	Ø25,4	Ø 25 ,4		
длина тру- бопровода < 90 м	Диаметр га- зовой линии	ММ	Ø44,5	Ø44,5	Ø44,5		
Суммар- ная экви- валентная	Диаметр жидкостной линии	ММ	Ø25,4	Ø25,4	25,4		
длина тру- бопровода ≥ 90 м	Диаметр га- зовой линии	ММ	Ø54,0	Ø54,0	Ø54,0		
Труба вырав уровня масл		ММ	Ø6,35	Ø6,35	Ø6,35		

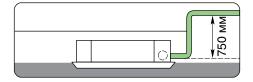
Примечание

Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.

Типы внутренних блоков мультизональных систем

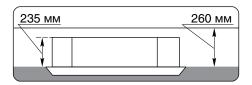
Модель	Одно- поточные кассетные	Двух- поточные кассетные	Четырех- поточные кассетные	Четырех- поточные компактные кассетые	Настенные внутренние блоки	Напольно- подпотолочные внутренние блоки
Мощность, кВт						
2,2	0			0	0	
2,8	•		0	0	0	
3,6	•	0	0	0	0	
4,5		•	0	0	0	O
5,6		•	0		0	O
7,1		•	0		0	O
8,0			0			O
9,0			0			O
10,0			0			
11,2			0			O
12,0						
12,5			0			
14,0			0			O
15,0						
16,0			0			0

Модель	Низконапор- ные канальные укороченные	Низко- напорные канальные	Средне- напорные канальные	Высоко- напорные канальные	Высоконапорные канальные с подачей свежего воздуха
Мощность, кВт					
2,2	0	•			
2,8	O	•			
3,2		•			
3,6	0	•			
4,5	0	•			
5,6	0	•			
7,1	0	•	0	0	
8,0			0	0	
9,0			0	0	
10,0			0	0	
12,0			0	0	
14,0					0
15,0			0	0	
20,0				0	
22,4					0
25,0				0	
28,0				0	0



Аксессуары

	Стандарт	Опция	Встроено
ИК ПДУ	0		
Проводной ПДУ		•	
Электронный РВ			0


Встроенный дренажный насос

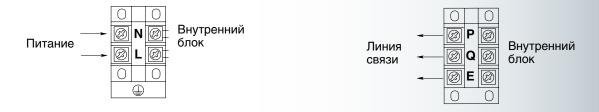
Дренажный насос имеет высокий ресурс и низкий уровень шума. Высота подъема 750 мм.

Малая высота корпуса

Однопоточные кассетные внутренние блоки имеют высоту 235 мм и прекрасно подходят для монтажа в помещениях с малым подпотолочным пространством.

Подмес свежего воздуха

Внутренний блок имеет порт для подключения воздуховода, подающего свежий воздух. Подмес свежего воздуха поможет сделать среду в помещении более комфортной.

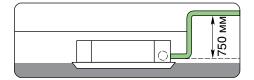


Однопоточные кассетные внутренние блоки

	Модель		CMV-V22Q1/HR1-B	CMV-V28Q1/HR1-B	CMV-V36Q1/HR1-B
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	2,2	2,8	3,6
	Обогрев	кВт	2,5	3,2	4,0
Мощность д	вигателя	кВт	0,02	0,02	0,025
Расход возд	уха	м ³ /ч	550	550	600
Уровень зву ления	Уровень звукового дав- ления		37–46	37–46	40–47
Размеры	Блок	ММ	848×235×465	848×235×465	848×235×465
(Д×В×Г)	Упаковка	ММ	1095×305×535	1035×305×535	1095×305×535
	Панель	ММ	1 045×30×465	1 045×30×465	1 045×30×465
	Упаковка	ММ	1105×140×532	1105×140×532	1105×140×532
Вес нетто/бр	рутто	КГ	21/24,5	21/24,5	21/24,5
Диаметр жид	дкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35
Диаметр газовой линии мм		ММ	Ø9,52	Ø9,52	Ø12,7
Диаметр дренажной линии мм		ММ	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте				Беспроводной пульт	

Примечания

- . Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.



Аксессуары

	Стандарт	Опция	Встроено
ик пду	0		
Проводной ПДУ		0	
Электронный РВ			•

Встроенный дренажный насос

Дренажный насос имеет высокий ресурс и низкий уровень шума. Высота подъема 750 мм.

Стильный дизайн и малая высота корпуса

Внешний вид и технические характеристики внутреннего блока позволили ему стать удобным для работы как дизайнеру, так и проектировщику.

Мощный воздушный поток

обеспечит равномерное распределение температур даже при обслуживании помещений с высокими потолками.



Двухпоточные кассетные внутренние блоки

	Модель		CMV-V36Q2/ HR1-B	CMV-V45Q2/ HR1-B	CMV-V56Q2/ HR1-B	CMV-V71Q2/ HR1-B
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	3,6	4,5	5,6	7,1
	Обогрев	кВт	4,0	5,0	6,3	8,0
Мощность д	_І вигателя	кВт	0,05	0,05	0,05	0,06
Расход возд	ıyxa	м ³ /ч	830	830	830	850
Уровень зву ления	кового дав-	дБ(А)	35–48	35–48	35–48	35–48
Размеры	Блок	ММ	1 082×295×592	1 082×295×592	1082×295×592	1082×295×592
(Д×В×Г)	Упаковка	ММ	1 180×310×610	1 180×310×610	1180×310×610	1180×310×610
	Панель	ММ	1342×46×680	1342×46×680	1342×46×680	1342×46×680
	Упаковка	ММ	1405×90×745	1 405×90×745	1 405×90×745	1 405×90×745
Вес нетто/б	рутто	КГ	34,2/37,6	34,2/37,6	34,2/37,6	34,2/37,6
Диаметр жи	дкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35	Ø9,53
Диаметр газ	Диаметр газовой линии		Ø12,7	Ø12,7	Ø12,7	Ø15,9
Диаметр др	Диаметр дренажной линии мм		Ø25,0	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте				Беспровод	цной пульт	

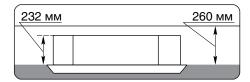
Примечания

- . 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Четырехпоточные кассетные внутренние блоки

Аксессуары

	Стандарт	Опция	Встроено
ик пду	0		
Проводной ПДУ		0	
Электронный РВ			0


Четыре направления распределения воздуха

Воздух подается равномерно в четырех направлениях, обеспечивая более сбалансированную температуру и высокий уровень комфорта.

Малая высота корпуса

Четырехпоточные кассетные блоки имеют высоту корпуса всего 232 мм и прекрасно подходят для монтажа в помещениях с низкими фальш-потолками.

Встроенный дренажный насос

Дренажный насос с низким уровнем шума. Высота подъема 750* мм, гибкость в подключении дренажных трубопроводов.

* Высота подъема у четырехпоточных кассетных блоков серии Compact составляет 700 мм.

Четырехпоточные кассетные внутренние блоки

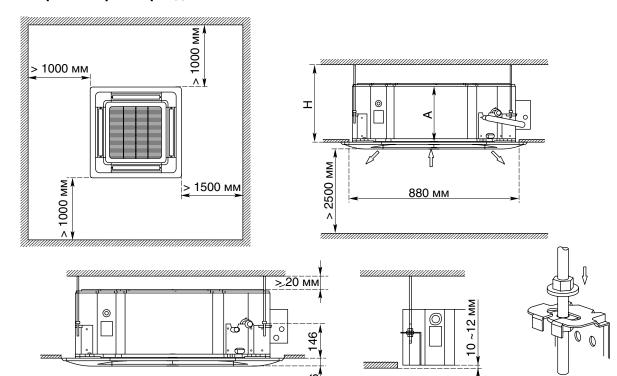
	Модель		CMV-V28Q/ HR1-C	CMV-V36Q/ HR1-C	CMV-V45Q/ HR1-C	CMV-V56Q/ HR1-C
Декоративн	ая панель		SP-S046V	SP-S046V	SP-S046V	SP-S046V
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	2,8	3,6	4,5	5,6
	Обогрев	кВт	3,2	4,0	5,0	6,3
Мощность д	вигателя	кВт	0,054	0,054	0,054	0,054
Расход возд	, уха	м ³ /ч	810	810	810	810
Уровень зву ления	Уровень звукового дав- ления		35–39	35–39	35–39	35–39
Размеры	Блок	ММ	833×232×900	833×232×900	833×232×900	833×232×900
(Д×В×Г)	Упаковка	ММ	920×265×960	920×265×960	920×265×960	920×265×960
	Панель	ММ	950×50×950	950×50×950	950×50×950	950×50×950
	Упаковка	ММ	1030×105×1030	1030×105×1030	1 030×105×1 030	1030×105×1030
Вес нетто/бр	рутто	КГ	24/30	24/30	24/30	24/30
Диаметр жи	дкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35
Диаметр газовой линии мм		ММ	∅9,52	Ø12,7	Ø12,7	Ø12,7
Диаметр дре	Диаметр дренажной линии мм		Ø25,0	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте				Беспровод	цной пульт	

Четырехпоточные кассетные внутренние блоки (продолжение)

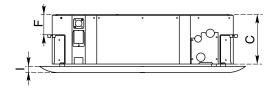
	Модель		CMV-V71Q/ HR1-C	CMV-V80Q/ HR1-C	CMV-V90Q/ HR1-C	CMV-V100Q/ HR1-C
Декоративная панель			SP-S046V	SP-S046V	SP-S046V	SP-S046V
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	7,1	8,0	9	10,0
	Обогрев	кВт	8,0	8,8	10,0	11,0
Мощность д	вигателя	кВт	0,093	0,093	0,16	0,16
Расход возд	, уха	м³/ч	1 200	1 200	1 600	1 600
Уровень зву ления	Уровень звукового дав- ления		36–39	36–39	37–41	37–41
Размеры	Блок	ММ	833×232×900	833×232×900	833×286×900	833×286×900
(Д×В×Ґ)	Упаковка	ММ	920×265×960	920×265×960	920×310×960	920×310×960
	Панель	ММ	950×50×950	950×50×950	950×50×950	950×50×950
	Упаковка	ММ	1030×105×1030	1030×105×1030	1030×105×1030	1030×105×1030
Вес нетто/бр	рутто	КГ	24/30	24/30	28,5/35	28,5/35
Диаметр жи,	дкостной линии	ММ	∅9,53	∅9,53	∅9,53	∅9,53
Диаметр газовой линии мм		ММ	Ø15,9	Ø15,9	Ø15,9	Ø15,9
Диаметр дренажной линии мм		Ø25,0	Ø25,0	Ø25,0	Ø25,0	
Пульт дистанционного управления в комплекте Беспроводно					дной пульт	

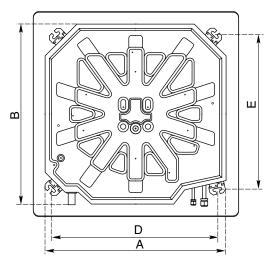
Четырехпоточные кассетные внутренние блоки (окончание)

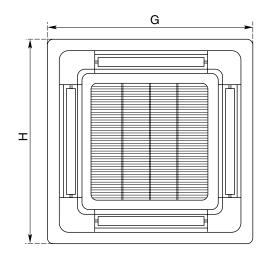
Пульт диста в комплекте	нционного упра Э	вления	Беспроводной пульт				
Диаметр дренажной линии мм			Ø25,0	Ø25,0	Ø25,0	Ø25,0	
Диаметр газовой линии мм		ММ	Ø15,9	Ø15,9	Ø15,9	Ø15,9	
Диаметр жи,	дкостной линии	ММ	Ø9,53	Ø9,53	Ø9,53	Ø9,53	
Вес нетто/бр	рутто	КГ	28,5/35	28,5/35	28,5/35	28,5/35	
	Упаковка	ММ	1030×105×1030	1030×105×1030	1030×105×1030	1030×105×1030	
	Панель	ММ	950×50×950	950×50×950	950×50×950	950×50×950	
(Д×В×Г)	Упаковка	ММ	920×310×960	920×310×960	920×310×960	920×310×960	
Размеры	Блок	ММ	833×286×900	833×286×900	833×286×900	833×286×900	
Уровень зву ления	Уровень звукового дав- ления		37–41	37–41	37–41	37–41	
Расход возд	цуха	м ³ /ч	1 600	1 600	1 600	1 600	
Мощность д	вигателя	кВт	0,16	0,16	0,16	0,16	
	Обогрев	кВт	12,5	14,0	15,0	17,0	
Мощность	Охлаждение	кВт	11,2	12,5	14,0	16,0	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50	
Декоративн	ая панель		SP-S046V	SP-S046V	SP-S046V	SP-S046V	
	Модель		CMV-V112Q/ HR1-C	CMV-V125Q/ HR1-C	CMV-V140Q/ HR1-C	CMV-V160Q/ HR1-C	


Примечания

- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.




Габаритные размеры для монтажа



Модель	А, мм	Н, мм
CMV-V28Q/HR1-C	232	>260
CMV-V36Q/HR1-C	232	>260
CMV-V45Q/HR1-C	232	>260
CMV-V56Q/HR1-C	232	>260
CMV-V71Q/HR1-C	232	>260
CMV-V80Q/HR1-C	232	>260
CMV-V90Q/HR1-C	286	>260
CMV-V100Q/HR1-C	286	>330
CMV-V112/HR1-C	286	>330
CMV-V125Q/HR1-C	286	>330
CMV-V140Q/HR1-C	286	>330
CMV-V160Q/HR1-C	286	>330

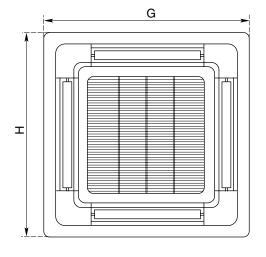
Габаритные размеры

Модель	Габаритные размеры, Уста мм		Установ	становочные размеры, мм			Размеры панели, мм		
	Α	В	С	D	E	F	G	Н	I
CMV-V28Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V36Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V45Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V56Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V71Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V80Q/HR1-C	900	833	232	780	680	94	950	950	50
CMV-V90Q/HR1-C	900	833	236	780	680	94	950	950	50
CMV-V100Q/HR1-C	900	833	236	780	680	150	950	950	50
CMV-V112Q/HR1-C	900	833	236	780	680	150	950	950	50
CMV-V125Q/HR1-C	900	833	236	780	680	150	950	950	50
CMV-V140Q/HR1-C	900	833	236	780	680	150	950	950	50
CMV-V 160Q/HR1-C	900	833	236	780	680	150	950	950	50

Четырехпоточные кассетные внутренние блоки (Compact type)

Модель			CMV-V22Q4/ HR1-B	CMV-V28Q4/ HR1-B	CMV-V36Q4/ HR1-B	CMV-V45Q4/ HR1-B
Декоративн	ая панель		SP-S044V	SP-S044V	SP-S044V	SP-S044V
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	2,2	2,8	3,6	4,5
	Обогрев	кВт	2,5	3,2	4,0	5,0
Мощность д	_І вигателя	кВт	0,065	0,065	0,070	0,075
Расход возд	цуха	м ³ /ч	500	500	600	750
Уровень зву ления	Уровень звукового дав- ления		35–38	35–38	35–38	35–39
Размеры	Блок	ММ	633×275×580	633×275×580	633×275×580	633×275×580
(Д×В×Г)	Упаковка	ММ	745×375×675	745×375×675	745×375×675	745×375×675
	Панель	ММ	650×30×650	650×30×650	650×30×650	650×30×650
	Упаковка	ММ	750×95×750	750×95×750	750×95×750	750×95×750
Вес нетто/б	рутто	КГ	23,0/25,0	23,0/25,0	26,0/28,0	26,0/28,0
Диаметр жи	дкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35
Диаметр газовой линии мм		ММ	∅9,53	∅9,53	Ø12,7	Ø12,7
Диаметр др	Диаметр дренажной линии мм		Ø25,0	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте				Беспровод	дной пульт	

Примечания

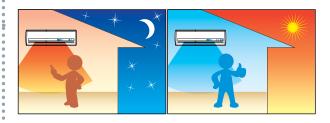

- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Габаритные размеры для монтажа

Модель	Габаритные размеры, мм		Установочные размеры, мм			Размеры панели, мм			
	Α	В	С	D	Е	F	G	Н	I
CMV-V22Q4/HR1-B	633	580	275	402	615	44	650	650	30
CMV-V28Q4/HR1-B	633	580	275	402	615	44	650	650	30
CMV-V36Q4/HR1-B	633	580	275	402	615	44	650	650	30
CMV-V45Q4/HR1-B	633	580	275	402	615	44	650	650	30

Настенные внутренние блоки

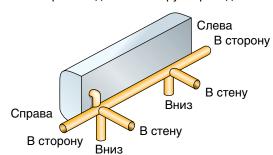
Аксессуары


	Стандарт	Опция	Встроено
ИК ПДУ	0		
Проводной ПДУ		0	
Электронный РВ			0

Широкий диапазон регулирования направления подачи воздуха

Положение жалюзи подачи воздуха может быть установлено автоматически или изменено с пульта управления в широком диапазоне до 65 градусов.

Комфортное воздухораспределение


В режиме охлаждения холодный воздух подается горизонтально, в режиме обогрева теплый воздух подается вниз.

Гибкость при монтаже

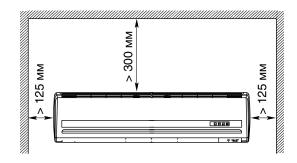
Фреоновые трубопроводы могут быть подсоединены с двух сторон в трех различных направлениях.

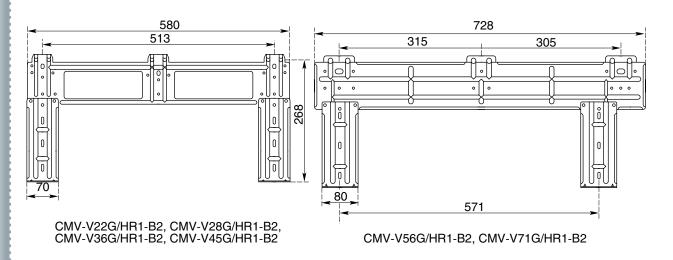
Сторона подключения трубопроводов

Настенные внутренние блоки

	Модель		CMV-V22G/HR1-B2	CMV-V28G/HR1-B2	CMV-V36G/HR1-B2
Электропита		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	2,2	2,8	3,6
	Обогрев	кВт	2,5	3,2	4,0
Мощность д	вигателя	кВт	0,055	0,055	0,058
Расход возд	уха	м ³ /ч	540	540	600
Уровень зву ления	кового дав-	дБ(А)	24–33	24–33	24–33
Размеры	Блок	ММ	900×282×205	900×282×205	900×282×205
(Д×В×Г)	Упаковка	ММ	973×367×290	973×367×290	973×367×290
Вес нетто/бр	рутто	КГ	12,0/14,0	12,0/14,0	12,0/14,0
Диаметр жи	цкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35
Диаметр газ	вовой трубы	ММ	Ø9,53	Ø9,53	Ø12,7
Диаметр дре	Диаметр дренажной трубы мм		Ø20,0	Ø20,0	Ø20,0
Пульт диста в комплекте	ульт дистанционного управления комплекте Беспроводной пульт				

Настенные внутренние блоки (окончание)


	Модель		CMV-V45G/HR1-B2	CMV-V56G/HR1-B2	CMV-V71G/HR1-B2
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	4,5	5,6	7,1
	Обогрев	кВт	5,0	6,2	7,8
Мощность д	вигателя	кВт	0,06	0,06	0,06
Расход возд	уха	м ³ /ч	600	920	920
Уровень зву ления	кового дав-	дБ(А)	33–40	35–43	35–43
Размеры	Блок	ММ	900×282×205	1080×304×221	1 080×304×221
(Д×В×Г)	Упаковка	ММ	973×367×290	1135×382×308	1135×382×308
Вес нетто/бр	рутто	КГ	12,0/14,0	16,0/18,0	16,0/18,0
Диаметр жид	цкостной трубы	ММ	Ø6,35	Ø6,35	Ø9,53
Диаметр газ	вовой трубы	ММ	Ø12,7	Ø12,7 Ø12,7	
Диаметр дренажной трубы мм		ММ	Ø20,0	Ø20,0	Ø20,0
Пульт дистанционного управления в комплекте Беспроводной пульт					


Примечания

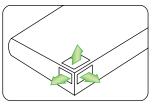
- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 $^{\circ}$ C; температура внутри помещения по сухому термометру 27 $^{\circ}$ C, по влажному термометру 19 $^{\circ}$ C. Режим обогрева: наружная температура 7 $^{\circ}$ C; температура внутри помещения по сухому термометру 20 $^{\circ}$ C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Габаритные размеры для монтажа

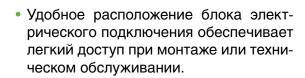
Габаритные размеры

Модель	А, мм	В, мм	С, мм
CMV-V22G/HR1-B2	900	282	205
CMV-V28G/HR1-B2	900	282	205
CMV-V36G/HR1-B2	900	282	205
CMV-V45G/HR1-B2	900	282	205
CMV-V56G/HR1-B2	1080	304	221
CMV-V71G/HR1-B2	1080	304	221

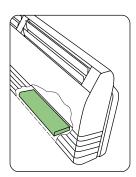
Аксессуары


	Стандарт	Опция	Встроено
ИК ПДУ	0		
Проводной ПДУ		0	
Электронный РВ			0

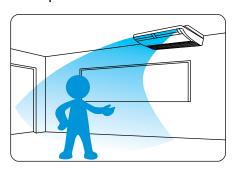
Напольный или подвесной монтаж для экономии полезной площади

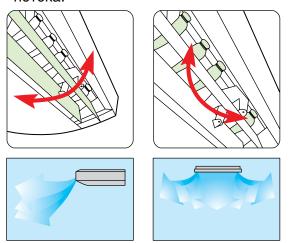

- При напольном монтаже возможно использование эффекта арки, но при этом занимается полезная площадь пола.
- При потолочном монтаже используется эффект «прилипания» струи воздуха к потолку, что позволяет сэкономить полезную площадь и избежать попадания холодного воздуха непосредственно в рабочую зону.

Удобство в монтаже


 Фреоновые трубопроводы могут быть подсоединены с трех сторон.

 Воздушные фильтры легко удаляются из воздухозаборной решетки для очистки.



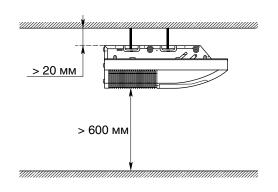


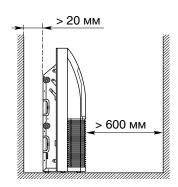
Равномерность подачи воздуха

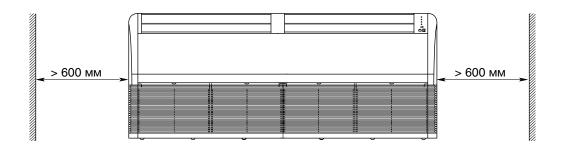
 Применение низкошумных и высокопроизводительных центробежных вентиляторов обеспечивает большой расход воздуха с его подачей на значительные расстояния.

• 3D-подача воздуха: благодаря широким углам регулирования воздушного потока.

Воздух равномерно распределяется по помещению


• В режиме охлаждения холодный воздух подается горизонтально.



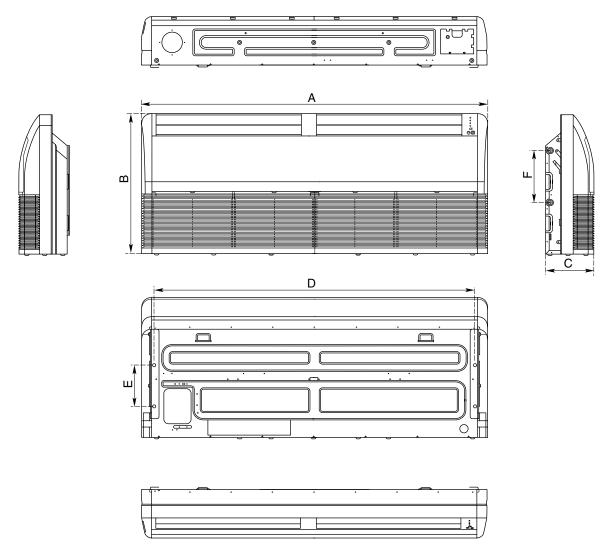

 В режиме обогрева теплый воздух подается вертикально.

Габаритные размеры для монтажа

Напольно-подпотолочные внутренние блоки

Модель			CMV-V45LD/ HR1-B	CMV-V56LD/ HR1-B	CMV-V71LD/ HR1-B	CMV-V80LD/ HR1-B	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50	
Мощность	Охлаждение	кВт	4,5	5,6	7,1	8,0	
	Обогрев	кВт	5,0	6,3	8,0	8,8	
Мощность д	вигателя	кВт	0,06	0,06	0,15	0,15	
Расход возд	уха	м ³ /ч	950	950	1 300	1 300	
Уровень звукового дав- ления		дБ(А)	37–46	37–46	39–48	39–48	
Размеры	Блок	ММ	1270×635×225	1270×635×225	1270×635×225	1270×635×225	
(Д×Г×В)	Упаковка	ММ	1325×770×325	1325×770×325	1325×770×325	1325×770×325	
Вес нетто/бр	рутто	КГ	36,0/42,0	36,0/42,0	36,0/42,0	36,0/42,0	
Диаметр жи	цкостной линии	ММ	Ø6,35	Ø6,35	Ø9,53	Ø9,53	
Диаметр газ	вовой линии	ММ	Ø12,7	Ø12,7	Ø15,9	Ø15,9	
Диаметр дренажной линии мм		ММ	Ø20,0	Ø20,0	Ø25,0	Ø25,0	
Пульт дистанционного управления в комплекте			Беспроводной пульт				

Напольно-подпотолочные внутренние блоки (окончание)

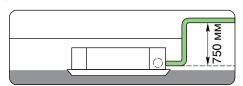

	Модель		CMV-V90LD/ HR1-B	CMV-V112LD/ HR1-B	CMV-V140LD/ HR1-B	CMV-V160LD/ HR1-B	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50 220~240/1/50 220~240/1/50		220~240/1/50	
Мощность	Охлаждение	кВт	9,0	11,2	14,0	16,0	
	Обогрев	кВт	10,0	12,5	15,0	17,0	
Мощность д	вигателя	кВт	0,40	2×0,26	2×0,26	0,26	
Расход возд	yxa	м ³ /ч	1 500	2300	2300	2300	
Уровень зву ления	кового дав-	дБ(А)	44–50	45–52	45–52	45–52	
Размеры	Блок	ММ	1270×635×225	1660×635×225	1660×635×225	1660×635×225	
(Д×Г×В)	Упаковка	ММ	1325×770×325	1750×770×325	1750×770×325	1750×770×325	
Вес нетто/бр	рутто	КГ	38,0/44,0	51,0/58,0	51,0/58,0	51,0/58,0	
Диаметр жид	цкостной линии	ММ	Ø9,53	Ø9,53	Ø9,53	Ø9,53	
Диаметр газ	Диаметр газовой линии мм		Ø15,9	Ø15,9	Ø15,9	Ø15,9	
Диаметр дренажной линии мм		ММ	Ø25,0	Ø25,0	Ø25,0	Ø25,0	
Пульт дистанционного управления в комплекте			Беспроводной пульт				

Примечания

- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Габаритные размеры

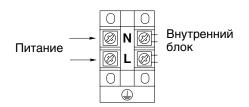
Модель	Габар	итные размер) Ы, ММ	Установочные размеры, мм			
	Α	В	С	D	E	F	
CMV-V45LD/HR1-B	1270	635	225	1119	200	250	
CMV-V56LD/HR1-B	1270	635	225	1119	200	250	
CMV-V71LD/HR1-B	1270	635	225	1119	200	250	
CMV-V80LD/HR1-B	1270	635	225	1119	200	250	
CMV-V90LD/HR1-B	1270	635	225	1119	200	250	
CMV-V112LD/HR1-B	1 660	635	225	1 544	200	250	
CMV-V140LD/HR1-B	1 660	635	225	1 544	200	250	
CMV-V160LD/HR1-B	1 660	635	225	1 544	200	250	

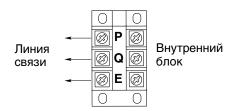


Аксессуары

	Стандарт	Опция	Встроено
ИК ПДУ		•	
Проводной ПДУ	0		
Электронный РВ			0

Встроенный дренажный насос


Дренажный насос 750 мм.



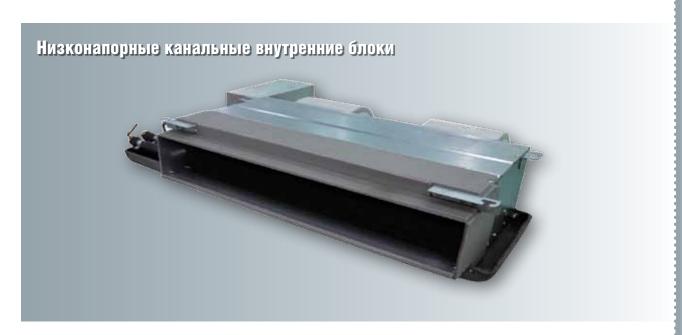
Компактные размеры

Ширина внутреннего блока составляет 700 мм и делает его удобным для применения в гостиничных номерах, т.к. зачастую места монтажа (тамбуры, холлы и т.п.) имеют малую площадь.

Еще одним плюсом для гостиничного применения стал низкий уровень шума внутреннего блока, а малый вес поволяет облегчить процесс монтажа.

Низконапорные канальные укороченные внутренние блоки

Модель		CMV-V22TA/HR1-C	CMV-V28TA/HR1-C	CMV-V36TA/HR1-C	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	2,2	2,8	3,6
	Обогрев	кВт	2,5	3,2	4,0
Мощность д	вигателя	кВт	0,05	0,05	0,07
Расход возд	ıyxa	м ³ /ч	450	450	550
Уровень звукового дав- ления		дБ(А)	24–29	24–29	25–32
Свободный	напор	Па	30	30	30
Размеры	Блок	ММ	700×210×467	700×210×467	700×210×467
(Д×В×Г)	Упаковка	ММ	910×240×530	910×240×530	910×240×530
Вес нетто/бр	рутто	КГ	16,0/19,0	16,0/19,0	16,0/19,0
Диаметр жид	дкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35
Диаметр газовой линии мм		ММ	Ø9,53	Ø9,53	Ø12,7
Диаметр дренажной линии мм		ММ	Ø25,0 Ø25,0 Ø25,		Ø25,0
Пульт дистанционного управления в комплекте			Проводной пульт		

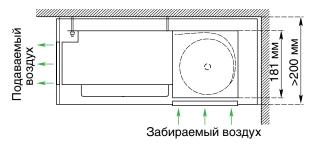

Низконапорные канальные укороченные внутренние блоки (окончание)

Модель			CMV-V45TA/HR1-C	CMV-V56TA/HR1-C	CMV-V71TA/HR1-C	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	
Мощность	Охлаждение	кВт	4,5	5,6	7,1	
	Обогрев	кВт	5,0	6,3	8,0	
Мощность д	вигателя	кВт	0,08	0,09	0,11	
Расход возд	уха	м ³ /ч	620	900	1100	
Уровень звукового дав- ления		дБ(А)	33–38	27–38	29–39	
Свободный	напор	Па	30	30	30	
Размеры	Блок	ММ	700×210×467	900×210×467	1100×210×467	
(Д×В×Г)	Упаковка	ММ	910×240×530	1110×240×530	1310×240×530	
Вес нетто/бр	рутто	КГ	16,0/19,0	19,0/22,5	22,0/26,0	
Диаметр жи	дкостной линии	ММ	Ø6,35	Ø6,35	∅9,53	
Диаметр газовой линии м		ММ	Ø12,7 Ø12,7		Ø15,9	
Диаметр дренажной линии мм		Ø25,0 Ø25,0 Ø25		Ø25,0		
Пульт дистанционного управления в комплекте				Проводной пульт		

Примечания

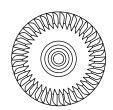
- $^{\circ}$. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Аксессуары

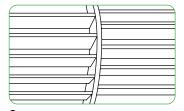

	Стандарт	Опция	Встроено
ИК ПДУ		•	
Проводной ПДУ	0		
Электронный РВ			0

Одинаковая высота и глубина внутренних блоков

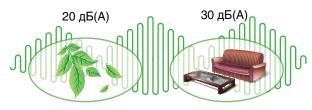
Все низконапорные канальные блоки имеют одну и ту же высоту и глубину. Это облегчает процесс проектирования и монтажа, особенно, когда несколько агрегатов различной производительности устанавливаются в одном помещении.


Малая высота корпуса

Низконапортные канальные блоки отличаются малой высотой корпуса — всего 181 мм и хорошо подходят для помещений с многоуровневыми потолками.



Большой расход воздуха при низком уровне шума


Применение центробежного вентилятора со специальной конструкцией корпуса и рабочего колеса, а также уникальной системы гашения вибраций позволяет обеспечить высокий расход воздуха при низком уровне шума. Уровень шума составляет всего 29 дБ.

Рабочее колесо из полимера.

Смещенное расположение лопаток рабочего колеса для снижения шума.

Шелест листвы

Низкошумный высокоэффективный электродвигатель размещен на резиновых амортизаторах для снижения вибраций и уровня шума.

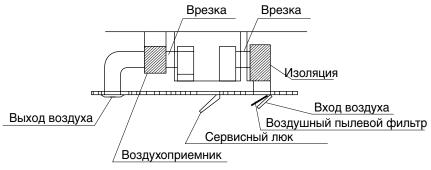
Специальная конструкция корпуса и рабочего колеса позволила увеличить равномерность потока воздуха на входе и выходе вентилятора и уменьшить уровень шума.

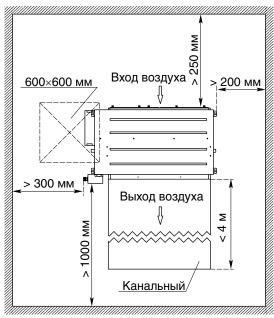
Низконапорные канальные внутренние блоки

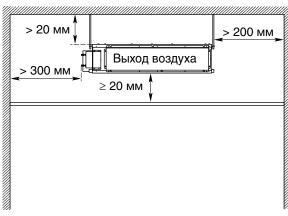
Модель		CMV-V22TA/ HR1-B	CMV-V28TA/ HR1-B	CMV-V32TA/ HR1-B	CMV-V36TA/ HR1-B		
Электропита	ание	В/ф/Гц	220-240/1/50	220~240/1/50	220~240/1/50	220~240/1/50	
Мощность	Охлаждение	кВт	2,2	2,8	3,2	3,6	
	Обогрев	кВт	2,5	3,2	3,5	4,0	
Мощность д	вигателя	кВт	0,045	0,045	0,065	0,065	
Расход возд	уха	м ³ /ч	450	450	550	550	
Уровень звукового дав- ления		дБ(А)	29–36	29–36	30–37	30–37	
Свободный	напор	Па	20	20	20	20	
Размеры	Блок	ММ	925×181×510	925×181×510	925×181×510	925×181×510	
(Д×В×Г)	Упаковка	ММ	1 055×250×605	1055×250×605	1055×250×605	1055×250×605	
Вес нетто/бр	утто	КГ	17,0/20,0	17,0/20,0	17,5/20,5	17,5/20,5	
Диаметр жид	цкостной линии	ММ	Ø6,35	Ø6,35	Ø6,35	Ø6,35	
Диаметр газовой линии мм		ММ	Ø9,53	Ø9,53	Ø12,7	Ø12,7	
Диаметр дре	нажной линии	ММ	Ø20,0	Ø20,0	Ø20,0	Ø20,0	
Пульт дистанционного управления в комплекте			Проводной пульт управления				

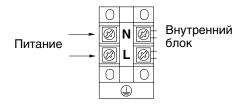
Низконапорные канальные внутренние блоки (окончание)

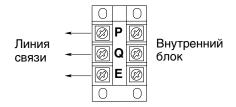
Модель			CMV-V45TA/ CMV-V56TA/ HR1-B HR1-B		CMV-V71TA/ HR1-B
Электропита	ание	В/ф/Гц	220~240/1/50 220~240/1/50		220~240/1/50
Мощность	Охлаждение	кВт	4,5	5,6	7,1
	Обогрев	кВт	5,0	6,3	8,0
Мощность д	вигателя	кВт	0,075	0,075	0,105
Расход возд	yxa	М ³ /Ч	780	780	1100
Уровень звукового дав- ления		дБ(А)	32–40	32–40	35–42
Свободный	напор	Па	20	20	20
Размеры	Блок	ММ	1205×181×510	1205×181×510	1530×181×510
(Д×В×Г)	Упаковка	ММ	1 330×250×605	1330×250×605	1645×250×605
Вес нетто/бр	рутто	КГ	21,0/25,0	21,0/25,0	26,0/30,0
Диаметр жид	дкостной линии	ММ	Ø6,35	Ø6,35	Ø9,53
Диаметр газовой линии		ММ	Ø12,7	Ø12,7	Ø15,9
Диаметр дренажной линии мм		ММ	Ø20,0		
Пульт дистанционного управления в комплекте			Пр	оводной пульт управлен	ния

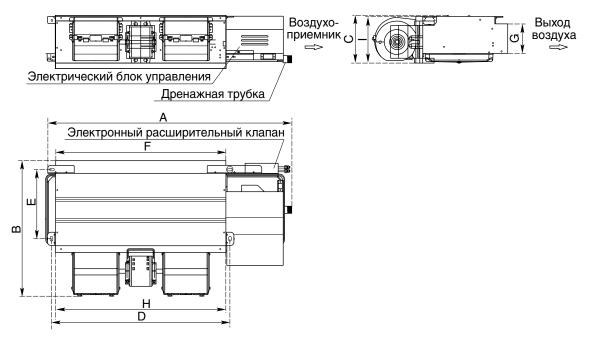

Примечания

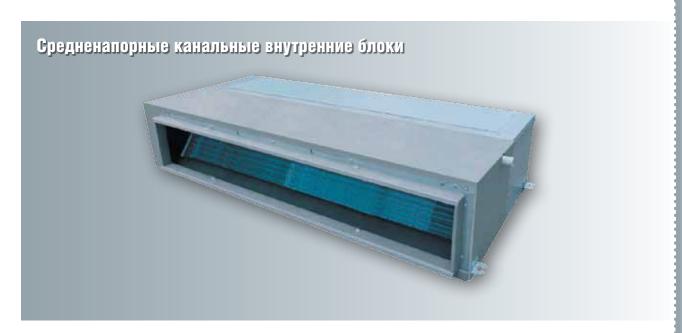

 $^{^{\}circ}$. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.


^{2.} Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.


^{3.} Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

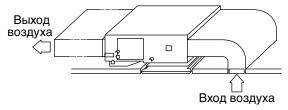

Габаритные размеры для монтажа

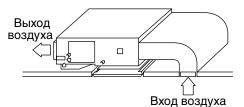




Габаритные размеры

Модель	Габаритные размеры, мм		разм	вочные іеры, м	выпус отвер	мер кного остия, м	всасыв отвер	мер ающего остия, м	
	Α	В	С	D	Е	F	G	Н	I
CMV-V22TA/HR1-B	925	510	181	672	261	642	112	642	176
CMV-V28TA/HR1-B	925	510	181	672	261	642	112	642	176
CMV-V32TA/HR1-B	925	510	181	672	261	642	112	642	176
CMV-V36TA/HR1-B	925	510	181	672	261	642	112	642	176
CMV-V45TA/HR1-B	1205	510	181	951	261	921	112	920	176
CMV-V56TA/HR1-B	1205	510	181	951	261	921	112	920	176
CMV-V71TA/HR1-B	1530	510	181	1274	261	1244	112	1243	176

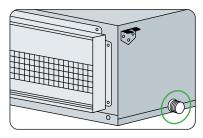



Аксессуары

	Стандарт	Опция	Встроено
ИК ПДУ		0	
Проводной ПДУ	0		
Электронный РВ			0

По умолчанию внешний статический напор 70 Па, при необходимости возможна перенастройка на 30 Па

Внешний статический напор 70 Па.

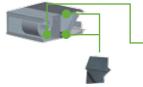

Напор 30 Па (можно переключить по необходимости) — подходит для помещений с жесткими требованиями к уровню шума.

Удобное подсоединение дренажного трубопровода

В конструкции блока предусмотрено два места отвода конденсата: с левой и с правой стороны. Выбор стороны отвода

Левое дренажное отверстие

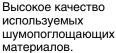
зависит от места монтажа. Это упрощает работу проектировщика при проектировании дренажной системы.


Правое дренажное отверстие

Специальные меры по снижению уровня шума

В данной серии внутренних блоков применены технологии, обеспечивающие низкошумную работу оборудования, в том числе: высокоэффективные электродвигатели с низким уровнем шума,

специальная конструкция рабочих колес и корпуса вентиляторов, внутренняя стенка корпуса с шумопоглощающим покрытием, уникальный дизайн самих блоков и др.

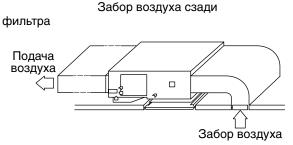


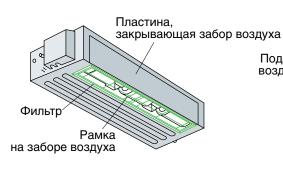
и др.

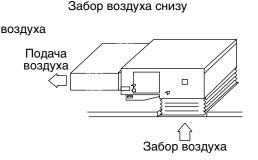
Низкошумный высокоэффективный электродвигатель размещен на
резиновых амортизаторах
для снижения вибраций

и уровня шума.

0-


Тщательно спроектированный корпус вентилятора позволил улучшить равномерность потока воздуха на выходе из вентилятора.


Рабочее колесо вентилятора разработано с помощью программного обеспечения, используемого при проектировании авиационных двигателей.


Два варианта забора воздуха из помещения

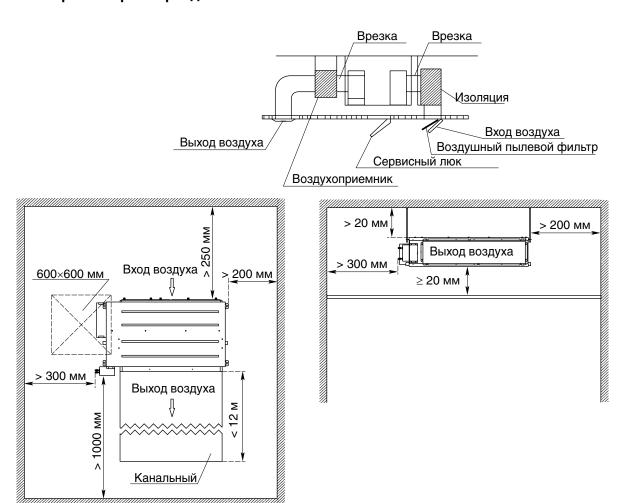
Можно выбрать сторону забора воздуха: снизу или сзади.

Средненапорные канальные внутренние блоки

Модель		CMV-V71TB/HR1-B	CMV-V80TB/HR1-B	CMV-V90TB/HR1-B			
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50		
Мощность	Охлаждение	кВт	7,1	8,0	9,0		
	Обогрев	кВт	8,0	9,0	10,0		
Мощность двигателя		кВт	0,30	0,30	0,34		
Расход воздуха		М ³ /Ч	1220	1220	1 850		
Уровень звукового дав- ления		дБ(А)	36–41	36–41	38–43		
Свободный напор		Па	70	70	70		
Размеры (Д×В×Г)	Блок	ММ	1209×260×680	1209×260×680	1445×260×680		
	Упаковка	ММ	1245×320×720	1245×320×720	1480×320×720		
Вес нетто/брутто		КГ	33,0/37,0	33,0/37,0	46,0/50,0		
Диаметр жидкостной линии		ММ	Ø9,53	Ø9,53	Ø9,53		
Диаметр газовой линии		ММ	Ø15,9	Ø15,9	Ø15,9		
Диаметр дренажной линии мм		ММ	Ø25,0	Ø25,0	Ø25,0		
Пульт дистанционного управления в комплекте		Проводной пульт управления					

Средненапорные канальные внутренние блоки (окончание)

Модель		CMV-V100TB/HR1-B	CMV-V120TB/HR1-B	CMV-V150TB/HR1-B	
Электропитание		В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	10,0	12,0	15,0
	Обогрев	кВт	11,0	13,0	17,0
Мощность двигателя		кВт	0,34	0,34	0,34
Расход воздуха		м ³ /ч	2000	2000	2000
Уровень звукового дав- ления		дБ(А)	40–44	40–44	40–44
Свободный напор		Па	70	70	70
Размеры (Д×В×Г)	Блок	ММ	1445×260×680	1 445×260×680	1 445×260×680
	Упаковка	ММ	1480×320×720	1 480×320×720	1 480×320×720
Вес нетто/брутто		КГ	46,0/50,0	46,0/50,0	46,0/50,0
Диаметр жидкостной линии		ММ	Ø9,53	Ø9,53	Ø9,53
Диаметр газовой линии		ММ	Ø15,9	Ø15,9	Ø15,9
Диаметр дренажной линии мм		ММ	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте		Проводной пульт управления			


Примечания


^{1.} Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.

^{2.} Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.

^{3.} Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

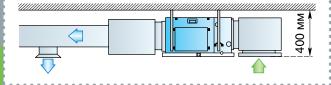
Габаритные размеры для монтажа



Габаритные размеры

F D

 \Rightarrow



Аксессуары

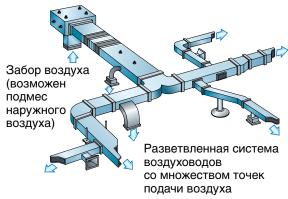
	Стандарт	Опция	Встроено
ИК ПДУ		•	
Проводной ПДУ	0		
Электронный РВ			•

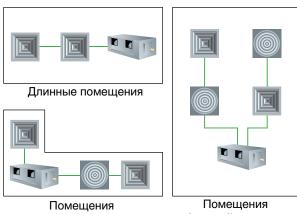
Малая высота корпуса

Малая высота корпуса позволяет монтировать внутренний блок в помещениях с небольшим пространством фальш-потолка.

Возможно использование различных диффузоров

Высоконапорные канальные блоки могут применяться вместе с самыми различными типами диффузоров в зависимости от проектных и дизайнерских решений.


Щелевой


Прямоугольный

Высокий внешний статический напор

- Большой расход воздуха с высоким статическим давлением позволяет использовать сложные системы воздуховодов большой длины.
- Удобен для использования в помещениях сложной формы.

Высоконапорный канальный внутренний блок

L-образной формы

большой площади

Высоконапорные канальные внутренние блоки

	Модель		CMV-V71TH/HR1-B	CMV-V80TH/HR1-B	CMV-V90TH/HR1-B	
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	
Мощность	Охлаждение	кВт	7,1	8,0	9,0	
	Обогрев	кВт	7,8	8,8	10,0	
Мощность д	вигателя	кВт	0,34	0,34	0,34	
Расход возд	ıyxa	м ³ /ч	1 500	1500	1 500	
Уровень звукового дав- ления		дБ(А)	40–42	40–42	40–42	
Свободный	напор	Па	150	150	150	
Размеры	Блок	ММ	1 445×260×680	1 445×260×680	1445×260×680	
(Д×В×Г)	Упаковка	ММ	1480×320×720	1 480×320×720	1 480×320×720	
Вес нетто/бр	рутто	КГ	46,0/50,0	46,0/50,0	46,0/50,0	
Диаметр жид	дкостной линии	ММ	Ø9,53	Ø9,53	Ø9,53	
Диаметр газ	вовой линии	ММ	Ø15,9	Ø15,9	Ø15,9	
Диаметр дре	Диаметр дренажной линии мм		Ø25,0	Ø25,0	Ø25,0	
Пульт диста в комплекте	нционного упра	вления	Проводной пульт управления			

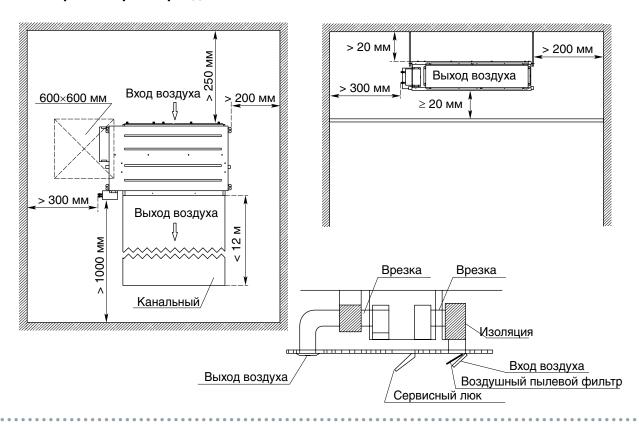
Высоконапорные канальные внутренние блоки (продолжение)

	Модель		CMV-V100TH/HR1-B	CMV-V120TH/HR1-B	CMV-V150TH/HR1-B
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50 220~240/1/50	
Мощность	Охлаждение	кВт	10,0	12,0	15,0
	Обогрев	кВт	11,0	13,0	17,0
Мощность д	вигателя	кВт	0,45	0,45	0,45
Расход возд	уха	м ³ /ч	2300	2300	2300
Уровень зву ления	Уровень звукового дав- ления		44–52	44–52	44–52
Свободный	напор	Па	150	150	150
Размеры	Блок	ММ	1190×370×620	1190×370×620	1 190×370x620
(Д×В×Г)	Упаковка	ММ	1245×445×655	1 245×445×655	1245×445x655
Вес нетто/бр	рутто	КГ	47,0/51,0	47,0/51,0	47,0/51,0
Диаметр жид	дкостной линии	ММ	Ø9,53	Ø9,53	Ø9,53
Диаметр газ	вовой линии	ММ	Ø19,1	Ø19,1	Ø19,1
Диаметр дре	енажной линии	ММ	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте Проводной пульт управления				ия	

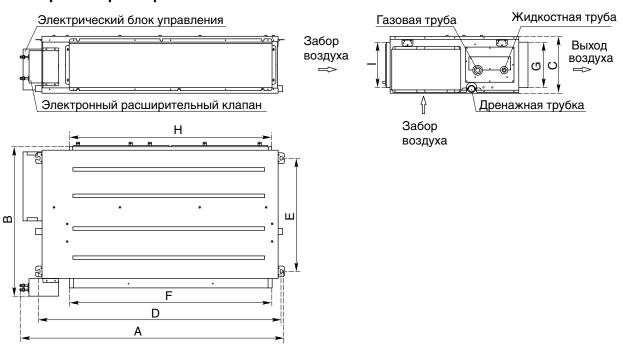
Высоконапорные канальные внутренние блоки (окончание)


	Модель		CMV-V200TH/HR1-B	CMV-V250TH/HR1-B	CMV-V280TH/HR1-B
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Мощность	Охлаждение	кВт	20,0	25,0	28,0
	Обогрев	кВт	22,0	27,5	30,8
Мощность д	вигателя	кВт	1,2	1,2	1,2
Расход возд	уха	м ³ /ч	4000	4200	4400
Уровень звукового дав- ления		дБ(А)	45–53	45–54	45–55
Свободный	напор	Па	150	150	150
Размеры	Блок	ММ	1 465×448×811	1465×448×811	1465×448×811
(Д×В×Г)	Упаковка	ММ	1510×490×870	1510×490×870	1510×490×870
Вес нетто/бр	рутто	КГ	102,0/106,0	102,0/106,0	102,0/106,0
Диаметр жид	цкостной линии	ММ	Ø12,7	Ø12,7	Ø12,7
Диаметр газ	овой линии	ММ	Ø22,0	Ø22,0	Ø22,0
Диаметр дре	енажной линии	ММ	Ø25,0	Ø25,0	Ø25,0
Пульт дистанционного управления в комплекте		Проводной пульт управления			

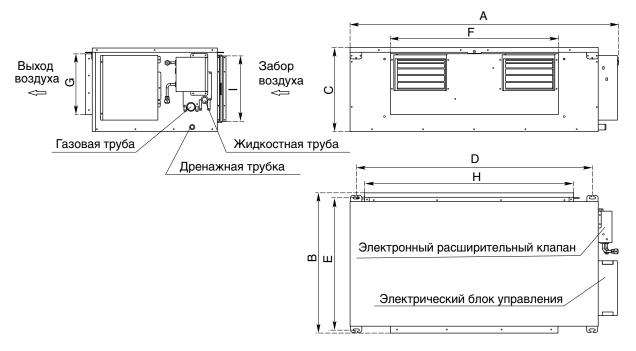
Примечания


- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

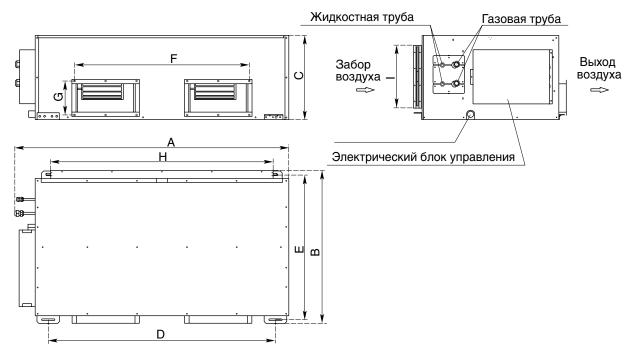
Электрическая схема подключения



Габаритные размеры для монтажа



Габаритные размеры


Модель	Габаритные размеры, мм		Установочные размеры, мм		Размер выпускного отверстия, мм		Размер всасывающего отверстия, мм		
	Α	В	С	D	E	F	G	Н	I
CMV- V71TH/HR1-B	1 445	680	260	1 101	515	920	197	920	207
CMV-V80TH/HR1-B	1 445	680	260	1 101	515	920	197	920	207
CMV-V90TH/HR1-B	1 445	680	260	1 101	515	920	197	920	207

Габаритные размеры

Модель	Габаритные размеры, мм				еры,	Размер выпускного отверстия, мм		Размер всасывающего отверстия, мм	
	Α	В	С	D	E	F	G	Н	I
CMV-V100TH/HR1-B	1190	620	370	1 038	588	740	267	920	290
CMV-V120TH/HR1-B	1190	620	370	1 038	588	740	267	920	290
CMV-V150TH/HR1-B	1190	620	370	1 038	588	740	267	920	290

Габаритные размеры

Модель	Габаритные размеры, мм		азмеры, Установочные размеры, мм		Размер выпускного отверстия, мм		Размер всасывающего отверстия, мм		
	Α	В	С	D	E	F	G	Н	I
CMV-V200TH/HR1-B	1 465	811	448	1162	771	930	180	1 174	272
CMV-V250TH/HR1-B	1 465	811	448	1162	771	930	180	1174	272
CMV-V280TH/HR1-B	1 465	811	448	1162	771	930	180	1174	272

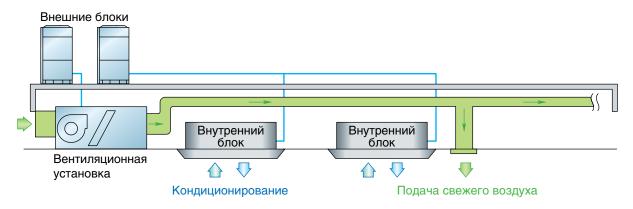
Аксессуары

	Стандарт	Опция	Встроено
ИК ПДУ		0	
Проводной ПДУ	0		
Электронный РВ			0

Здоровье и комфорт

Подача свежего воздуха повышает уровень комфорта и способствует улучшению самочувствия.

Высокое внешнее статическое давление


Внешнее статическое давление до 220 Па.

Только 100%-ный свежий воздух

- Обе функции (фильтрация и охлаждение/нагрев воздуха) могут быть объединены в одной системе.
- Внутренний блок и вентиляционная установка могут быть объединены в одну систему, что увеличивает возможности проектирования и позволяет серьезно снизить общие затраты на оборудование.

Инновационная технология для лучшего управления температурой

Высоконапорные канальные внутренние блоки со 100%-ной подачей свежего воздуха

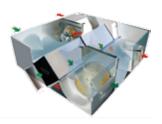
	Модель		CMV-V140TF/HR1-B	CMV-V224TF/HR1-B	CMV-V280TF/HR1-B		
Электропита	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50		
Мощность	Охлаждение	кВт	14,0	22,4	28,0		
	Обогрев	кВт	9,0	16,0	20,0		
Мощность д	вигателя	кВт	0,45	1,2	1,2		
Расход возд	уха	м ³ /ч	1 400	2000	2800		
Уровень звукового дав- ления		дБ(А)	42–48	45–52	45–52		
Свободный	напор	Па	220	220	220		
Размеры	Блок	ММ	1190×370×620	1465×448×811	1 465×448×811		
(Д×В×Г)	Упаковка	ММ	1 245×445×655	1510×490×870	1510×490×870		
Вес нетто/бр	рутто	КГ	47,0/51,0	102,0/106,0	102,0/106,0		
Диаметр жид	цкостной линии	ММ	Ø9,53	Ø12,7	Ø12,7		
Диаметр газ	овой линии	ММ	Ø15,9	Ø22,0	Ø22,0		
Диаметр дре	енажной линии	ММ	Ø25,0	Ø25,0	Ø25,0		
Пульт дистанционного управления в комплекте			Пр	Проводной пульт управления			

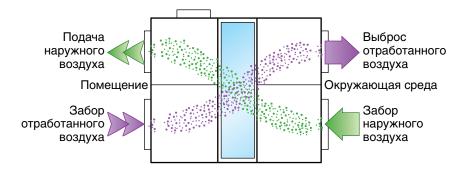
Примечания

- 1. Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 $^{\circ}$ C; температура внутри помещения по сухому термометру 27 $^{\circ}$ C, по влажному термометру 19 $^{\circ}$ C. Режим обогрева: наружная температура 7 $^{\circ}$ C; температура внутри помещения по сухому термометру 20 $^{\circ}$ C.
- 2. Уровень звукового давления измерен на расстоянии 1 м от лицевой стороны внутреннего блока на высоте 1,5 м. При реальной работе данные значения могут быть несколько выше из-за влияния фонового шума и особенностей помещения.
- 3. Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Электрическая схема подключения

Вентиляционные установки с рекуперацией тепла


Принцип работы


При прохождении через пластинчатый перекрестно-поточный теплообменник отработанного теплого воздуха и наружного холодного воздуха между ними происходит теплопередача из-за разности температур.

Летом наружный воздух охлаждается отработанным воздухом из обслуживаемого помещения, а зимой, наоборот, нагревается теплым воздухом из помещения. Таким образом осуществляется рекуперация (повторное использование) энергии отработанного (вытяжного) воздуха, что позволяет снизить энергозатраты на кондиционирование и отопление помещений.

Применение

Для офисных и административных зданий, гостиниц, ресторанов, конференц-залов, выставочных и развлекательных центров, промышленности и проч.

Вентиляционные установки

	Модель		QR-X02D	QR-X03D	QR-X04D	QR-X05D
Расход воздуха	a	м ³ /ч	200	300	400	500
Свободный ста	атический напор	Па	75	75	80	80
Потребляемая	мощность	Вт	65	120	200	220
Электропитани	1e	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50
Эффектив-	По температуре	%	77	78	78	79
ность рекуперации (лето)	По энтальпии	%	64	65	65	60
Эффектив-	По температуре	%	78	78	79	79
ность рекуперации (зима)	По энтальпии	%	69	70	70	71
Уровень звуког	Уровень звукового давления		30	45	48	50
Размеры (Д×Г×В)		ММ	848×654×264	926×722×270	926×927×270	1018×1027×270
Bec		КГ	25	27	30	41

Вентиляционные установки (продолжение)

	Модель		QR-X06D	QR-X08D	QR-X10D
Расход воздуха	a	м ³ /ч	600	800	1 000
Свободный ста	атический напор	Па	90	100	130
Потребляемая	мощность	Вт	220	410	510
Электропитани	1e	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50
Эффектив-	По температуре	%	79	79	78
ность рекуперации (лето)	По энтальпии	%	65	65	67
Эффектив-	По температуре	%	79	79	78
ность рекуперации (зима)	По энтальпии	%	70	70	71
Уровень звуког	вого давления	дБ(А)	50	52	54
Размеры (Д×Г×В)		ММ	1018×1027×270	1274×1007×388	1274×1007×388
Bec		КГ	42	68	82

Вентиляционные установки (продолжение)

	Модель		QR-X13D	QR-X15DS	QR-X20DS
Расход воздуха	Расход воздуха		1 300	1 500	2000
Свободный ста	атический напор	Па	150	160	170
Потребляемая	мощность	Вт	1 000	1 000	1200
Электропитани	1e	В/ф/Гц	220~240/1/50	380/3/50	380/3/50
Эффектив-	По температуре	%	78	78	79
ность рекуперации (лето)	По энтальпии	%	67	67	68
Эффектив-	По температуре	%	78	78	79
ность рекуперации (зима)	По энтальпии	%	70	72	70
Уровень звуког	вого давления	дБ(А)	54	58	60
Размеры (ДхГ	<b)< td=""><td>ММ</td><td>1274×1007×388</td><td>1 600×1 265×540</td><td>1 650×1 470×540</td></b)<>	ММ	1274×1007×388	1 600×1 265×540	1 650×1 470×540
Bec		КГ	82	200	225

Вентиляционные установки (продолжение)

Модель			QR-X25DS	QR-X30DS	QR-X40DS
Расход воздуха		м ³ /ч	2500	3000	4000
Свободный ста	атический напор	Па	180	200	220
Потребляемая	мощность	Вт	2000	2100	2400
Электропитани	1e	В/ф/Гц	380/3/50	380/3/50	380/3/50
Эффектив-	По температуре	%	78	79	78
ность рекупе- рации (лето)	По энтальпии	%	67	67	67
Эффектив-	По температуре	%	78	80	79
ность рекупе- рации (зима)	По энтальпии	%	71	70	71
Уровень звукового давления		дБ(А)	62	64	66
Размеры (Д×Г×В)		ММ	1710×1480×600	1 800×1 650×640	1725×1450×1050
Bec		КГ	240	270	265

Вентиляционные установки (продолжение)

Модель			QR-X50DS	QR-X60DS	QR-X70DS
Расход воздуха		м ³ /ч	5000	6 000	7000
Свободный ста	атический напор	Па	240	320	310
Потребляемая	мощность	Вт	3000	3600	3800
Электропитани	1e	В/ф/Гц	380/3/50	380/3/50	380/3/50
Эффектив-	По температуре	%	79	78	78
ность рекупе- рации (лето)	По энтальпии	%	66	67	67
Эффектив-	По температуре	%	80	79	79
ность рекупе- рации (зима)	По энтальпии	%	70	72	72
Уровень звукового давления		дБ(А)	68	66	67
Размеры (Д×Г×В)		ММ	1820×1780×1050	1802×1660×1050	2059×1780×1168
Bec		КГ	280	380	380

Вентиляционные установки (окончание)

Модель			QR-X80DS	QR-X90DS	QR-X100DS
Расход воздуха		м ³ /ч	8000	9000	10 000
Свободный ста	тический напор	Па	320	340	350
Потребляемая	мощность	Вт	4000	5 000	6000
Электропитани	10	В/ф/Гц	380/3/50	380/3/50	380/3/50
	По температуре	%	84	80	82
ность рекупе- рации (лето)	По энтальпии	%	67	67	67
Эффектив-	По температуре	%	84	80	82
ность рекупе- рации (зима)	По энтальпии	%	68	74	78
Уровень звукового давления		дБ(А)	68	70	78
Размеры (Д×Г×В)		ММ	2059×1780×1168	2280×1900×1200	22805×1900×1200
Bec		КГ	390	410	440

Примечания

^{. 1.} Данные приведены при следующих условиях. Режим охлаждения: наружная температура 35 °C; температура внутри помещения по сухому термометру 27 °C, по влажному термометру 19 °C. Режим обогрева: наружная температура 7 °C; температура внутри помещения по сухому термометру 20 °C.

^{2.} Некоторые технические характеристики оборудования могут отличаться от приведенных в каталоге в связи с постоянным совершенствованием оборудования.

Системы управления и программное обеспечение

Беспроводной пульт дистанционного управления (ПДУ)

- Запрос адреса внутреннего блока.
- Ручная адресация внутренних блоков.
- Выбор температуры.
- Изменение режима работы.
- Изменение скорости вентилятора.
- Таймер.

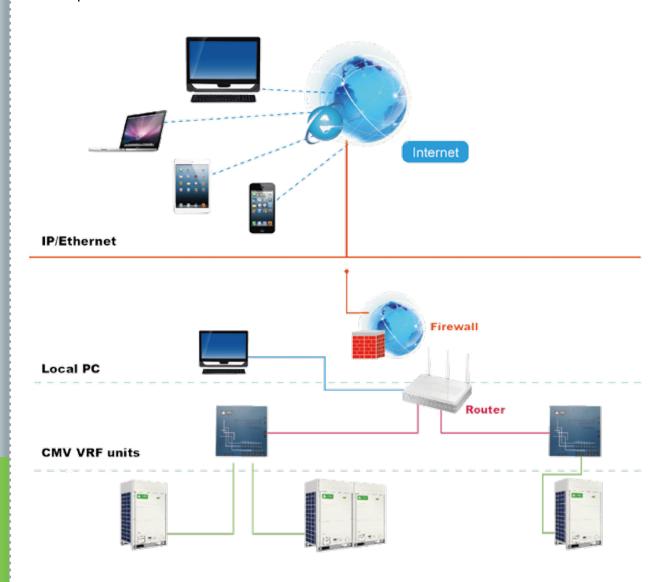
Проводной ПДУ

- Двусторонняя связь. Все параметры работы внутреннего блока (коды ошибок, температуры, адресация и пр.) можно запросить и отобразить на дисплее ПДУ.
- Компактный дизайн.
- 3-дюймовый ЖК-дисплей с белой подсветкой.
- Таймер.

Центральный контроллер

- Удобен в монтаже. Требует подключения только к наружным блокам.
- Возможен монтаж уже после окончания отделочных работ.
- Один центральный контроллер может управлять максимально 64 внутренни-

ми блоками. Дополнительные функции: может блокировать переключение режимов работы, полностью блокировать ПДУ, отображает ошибки системы.



внутренним блоком

Централизованная система управления

- Функция учета потребления энергии и выставления счетов.
- Вывод отчетов о работе.
- Управление таймерами и расписанием работы.
- Может быть подключено до 1024 внутренних блоков.
- Полный доступ к управлению внутренними блоками.

Системы диспетчеризации (BMS)

- На базе BACnet
- На базе Modbus

Комплект для диагностики Doctor Kit

- Контроль рабочих параметров блоков, запрос кодов ошибок.
- В режиме реального времени контролируются и отображаются рабочие параметры компрессоров, клапанов; снимаются показания датчиков и осуществляются иные действия
- Результаты мониторинга могут быть представлены в форме отчетов.
- Рабочие параметры системы кондиционирования CMV демонстрируются в режиме реального времени.

- Поиск неисправностей со встроенной инструкцией по их устранению.
- Автоматическое резервное копирование данных.

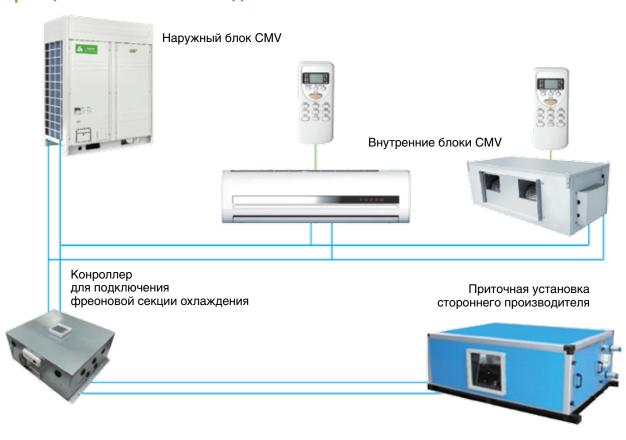
Программа подбора VRF

Контроллер для подключения фреоновой секции охлаждения

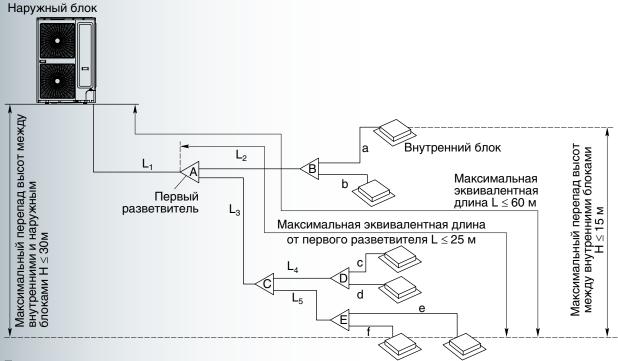
Контроллеры AHU-5P и AHU-10P позволяют подключить фреоновую секцию приточной установки к наружному блоку мультизональной системы Chigo CMV. При этом допускается работа

приточной установки в режиме как охлаждения, так и нагрева.

Возможный диапазон производительности установок по холоду/теплу от 2,2 кВт (0,8 HP) до 28 кВт (10 HP).


(12)	TZ TZ	2B 2 1
------	-------	--------------

Модель		AHU-5P	AHU-10P
Диаметр	На входе	Ø9,52	Ø12,7
жидкостной трубы, мм	На выходе	Ø9,52	Ø12,7


В комплект поставки для AHU-5P и AHU-10P входят пульт управления, датчики температур, соединительные провода для них и ЭРВ:

- T1 датчик температуры воздуха в помещении;
- Т2 датчик температуры кипения холодильного агента;
- Т2В датчик температуры холодильного агента на выходе испарителя.

Принципиальная схема подключения

Последовательность подбора элементов трассы холодильного агента для систем CMV-mini

Примечание

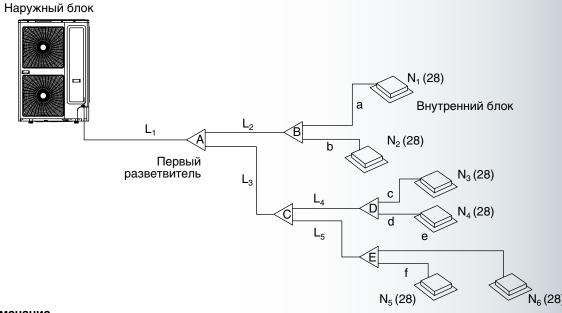

Производительность внутренних блоков указана в индексах (10 индексов = 1 кВт).

Рис. 1. Система трубопроводов мультизональной системы кондиционирования MINI CMV

Таблица 1 Ограничения по длинам трасс и перепадам высот для системы MINI CMV

	Суммарная физическая д	лина трубопроводов	≤ 110 M	$L_1 + L_2 + L_3 + L_5 + a + b + c + + f$
	Максимальная длина	Физическая длина	≤ 60 м	L + L ₂ + L ₃ + L ₄ + L ₅ + f
Длина	трубопровода от на- ружного до дальнего внутреннего блока, м	Эквивалентная длина	≤ 70 M	
	Эквивалентная длина труб разветвителя до дальнего	а трубопровода от первого ьнего внутреннего блока		L ₂ + L ₃ + L ₄ + L ₅ + f
	Длина трубопровода от вы до ближайшего разветвит		≤ 20 M	a – f
	Максимальный перепад	Наружный блок выше	≤ 30 M	
Перепад высот	высот между наружным и внутренними блоками Наружный блок ниже		≤ 20 M	_
	Максимальный перепад в ними блоками	ысот между внутрен-	≤8 м	

Примечание

Производительность внутренних блоков указана в индексах (10 индексов =1 кВт).

Рис. 2. Система трубопроводов мультизональной системы кондиционирования CMV с модульным наружным блоком

Таблица 2 Обозначения трубопроводов на Рис. 2

Наименование	Описание	Обозначение
Магистральный трубопровод	Труба между наружным блоком (последним рефнетом-соединителем наружных блоков) и первым разветвителем	L ₁
Внутренний соединительный трубопровод	Участки трубы между разветвителями	L ₂ ~L ₅
Внутренний разветвитель	Разветвитель для соединительных трубопроводов внутренних блоков	A ~ E
Трубопровод между развет- вителем и внутренним блоком	Трубопроводы от разветвителей до внутренних блоков	a ~ f

Таблица 3 Подбор внутренних разветвителей и трубопроводов (см. Рис. 2, элементы от A-E, L2–L5 и a-f)

W: суммарная производительность внутренних блоков, расположенных после	Диаметр трубоп перед подбираемым ра	Разветвители	
подбираемого разветвителя, кВт	Жидкость, мм	Газ, мм	
W < 6,5	Ø9,52	Ø12,7	SP-FQG-N01A
6,5 < W < 17,0	Ø9,52	Ø15,9	SP-FQG-N02A

Таблица 4
Выбор диаметра магистрального трубопровода (см. Рис. 2, элемент L1)

Производительность	Трубопровод			
наружного блока	Жидкость, мм	идкость, мм Газ, мм Первый разветвитель внутренних тру		
8 кВт	Ø9,52	Ø15,9		
10,0 кВт	Ø9,52	Ø15,9		
12,5 кВт	Ø9,52	Ø15,9	CD FOC NOOA	
14,0 кВт	Ø9,52	Ø15,9	SP-FQG-N02A	
16,0 кВт	∅9,52	Ø15,9		
18 кВт	∅9,52	Ø15,9		

Примечание

Если суммарная производительность внутренних блоков больше суммарной производительности наружных блоков, выбор диаметров магистрального трубопровода и первого разветвителя производить по Табл. 3.

Таблица 5 Трубопровод между разветвителем и внутренним блоком

А: производительность	Если длина труб	о́опровода < 10 м	Если длина трубопровода > 10 м		
внутренних блоков, кВт	Жидкость, мм	Газ, мм	Жидкость, мм	Газ, мм	
A < 2,8	Ø6,35	Ø9,53	Ø9,53	Ø12,7	
2,8 < A < 5,6	Ø6,35	Ø12,7	Ø9,53	Ø15,9	
5,6 < A < 8,0	∅9,53	Ø15,9	Ø12,7	Ø19,1	
8,0 < A < 16,0	∅9,53	Ø19,1	Ø15,9	Ø22,2	

Приложение 2

Последовательность подбора элементов трассы холодильного агента для систем CMV-II

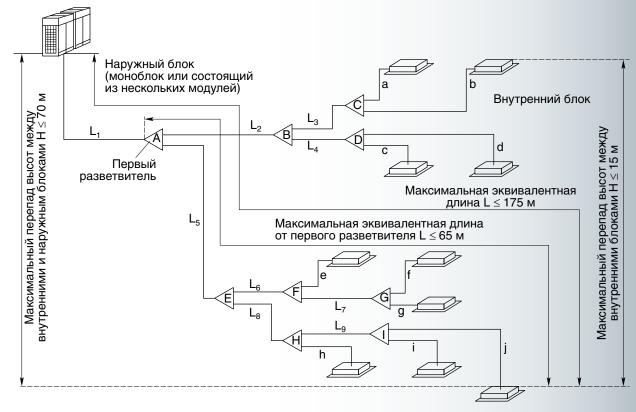
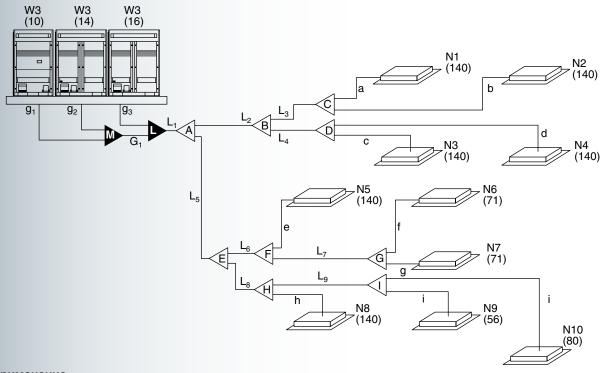



Рис. 1. Система трубопроводов мультизональной системы кондиционирования CMV

Таблица 1 Ограничения по длинам трасс и перепадам высот для системы CMV-II

Ma	Суммарная физическая длина трубопроводов		≤ 1 000	$L_1 + L_2 + L_3 + + L_8 + L_9 + a + b + c + + i + j$
	Максимальная длина трубопровода от на-	Физическая длина	≤ 150 M	
Длина	ружного до дальнего внутреннего блока Эквивалентная длина труб	Эквивалентная длина	≤ 175 M	L ₁ + L ₆ + L ₇ + L ₈ + L ₉ + j
		квивалентная длина трубопровода от ервого разветвителя до дальнего вну- еннего блока		L ₆ + L ₇ + L ₈ + L ₉ + j
	Длина трубопровода от внутреннего блока до ближайшего разветвителя		≤ 20 M	a – j
	Максимальный перепад высот между наружным и внутренними блоками	Наружный блок выше	≤ 50 м	
пад и внут высот Макси		Наружный блок ниже	≤ 70 M	_
	Максимальный перепад высот между вну- тренними блоками		≤ 15 M	

ПримечаниеПроизводительность внутренних блоков указана в индексах (10 индексов =1 кВт)

Рис. 2. Система трубопроводов мультизональной системы кондиционирования CMV с модульным наружным блоком

Таблица 2 Обозначения трубопроводов на Рис. 2

Наименование	Описание	Обозначение
Соединительные трубопроводы наружных блоков	Трубы между наружным блоком и рефнетом-соединителем для наружных блоков	g ₁ , g ₂ , g ₃
	Трубы между рефнетами-соединителями наружных блоков	G₁
Рефнет-соединитель наружных блоков	Комплект рефнетов-соединителей для объединения наружных блоков в холодильную станцию	L, M
Магистральный трубопровод	Труба между наружным блоком (последним рефнетом-соединителем наружных блоков) и первым разветвителем	L ₁
Внутренний соединительный трубопровод	Участки трубы между разветвителями	L ₂ ~ L ₉
Внутренний разветвитель	Разветвитель для соединительных трубопроводов внутренних блоков	A ~ I
Трубопровод между разветвителем и внутренним блоком	Трубопроводы от разветвителей до внутренних блоков	a ~ j

Таблица 3 Трубопровод между разветвителем и внутренним блоком

	: производительность	Если длина труб	бопровода < 10 м	Если длина трубопровода > 10 м		
BH	нутренних блоков, кВт	Жидкость, мм	Газ, мм	Жидкость, мм	Газ, мм	
	A < 2,8	Ø6,35	Ø9,53	∅9,53	Ø12,7	
	2,8 < A < 5,6	Ø6,35	Ø12,7	∅9,53	Ø15,9	
	5,6 < A < 16,0	∅9,53	Ø15,9	Ø12,7	Ø19,1	

Таблица 4 Подбор внутренних разветвителей и трубопроводов между разветвителями (см. Рис. 2, элементы от A–I и L_2 – L_9)

W: суммарная производительность внутренних блоков, расположенных	Диаметр трубо подбираемым	Разветвители	
после подбираемого разветвителя, кВт	Жидкость, мм	Газ, мм	
W < 6,5	Ø9,53	Ø12,7	SP-FQG-N01A
6,5 < W < 17,0	∅9,53	Ø15,9	SP-FQG-N02A
17,0 < W < 28,0	Ø12,7	Ø22,2	SP-FQG-N03A
28,0 < W < 33,5	Ø12,7	Ø25,4	CD FOC NOAA
33,5 < W < 40,0	Ø12,7	Ø28,6	SP-FQG-N04A
40,0 < W < 53,2	Ø15,9	Ø28,6	SP-FQG-N05A
53,2 < W < 68,0	Ø15,9	Ø31,8	
68,0 < W < 73,0	Ø15,9	Ø34,9	SP-FQG-N06A
73,0 < W < 96,0	Ø19,1	Ø34,9	
96,0 < W < 135,0	Ø19,1	Ø41,3	SP-FQG-N07A
W > 135,0	Ø22,2	Ø44,5	SP-FQG-N08A

Таблица 5 Выбор диаметра магистрального трубопровода (см. Рис. 2, элемент L₁)

	<u> </u>			•		**	
Производитель- ность наружного блока (суммарная	длина труб	Если суммарная эквивалентная длина трубопроводов от наружного блока до дальнего внутреннего < 90 м			Если суммарная эквивалентная длина трубопроводов от наружного блока до дальнего внутреннего > 90 м		
производительность модулей наружного блока)	Жидкость, мм	Газ, Первый разветви- мм тель внутренних трубопроводов		Жидкость, мм	Газ, мм	Первый разветвитель внутренних трубопроводов	
8 HP	Ø12,7	Ø22,2	SP-FQG-N03A	Ø12,7	Ø25.4	CD FOC NOAA	
10 HP	Ø12,7	Ø25,4	SP-FQG-N04A	Ø12,7	Ø25.4	SP-FQG-N04A	
12 HP	Ø12,7	Ø28,6	SP-FQG-NU4A	Ø15,9	Ø28,6	SP-FQG-N05A	
14 HP / 16 HP	Ø15,9	Ø28,6	SP-FQG-N05A	Ø15,9	Ø31,8		
От 18 НР до 22 НР	Ø15,9	Ø31,8		Ø19,1	Ø31,8	SP-FQG-N06A	
24 HP	Ø15,9	Ø34,9	SP-FQG-N06A	Ø19,1	Ø34,9		
От 26 НР до 32 НР	Ø19,1	Ø34,9		Ø22,2	Ø38,1	SP-FQG-N09A	
От 34 НР до 48 НР	Ø19,1	Ø41,3	SP-FQG-N07A	Ø22,2	Ø41,3	SF-I QG-NU9A	
От 50НР до 64НР	Ø22,2	Ø44,5	SP-FQG-N08A	Ø25,4	Ø44,5	SP-FQG-N10A	

Примечание Если суммарная производительность внутренних блоков больше суммарной производительности наружных блоков, выбор диаметров магистрального трубопровода и первого разветвителя производить по таблице 4.

Таблица 6 Диаметры трубопроводов между наружным блоком и рефнетом-соединителем для наружных блоков (см. Рис. 3 — элементы L, M и g₁, g₂, g₃, G₁)

Коли- чество наруж-	чество (пример)		Произво- дительность наружных блоков, мм (жидкость / газ)		ов, мм	Рефнет-со- единитель для трубо-	
блоков		блоков	g ₁ , g ₂ , g ₃ , g ₄	G ₁	G ₂	проводов наружных блоков	
2		8 HP/10 HP	Ø12,7/Ø25,4	_		L: SP-FQG-W2A	
2	g ₂ g ₁	12 HP/14 HP/ 16 HP	Ø15,9/Ø31,8		_		
3		8 HP/10 HP	Ø12,7/Ø25,4	~10.1/~00.1		L + M: SP-FQG-W3A	
3	g_3 g_2 g_1 G_1	12 HP/14 HP/ 16 HP	Ø15,9/Ø31,8	Ø19,1/Ø38,1	_		
4		8 HP/10 HP	Ø12,7/Ø25,4	~10.1/~00.1		L + M + N:	
4	g ₄ g ₃ g ₂ M g ₁ 12 HP/14 HP/ 16 HP		Ø15,9/Ø31,8	⁻ ∅19,1/∅38,1 ∅22,0/∅41,3		SP-FQG-W4A	

Примечание

Использовать только разветвители Chigo.

Приложение 3

Последовательность подбора элементов трассы холодильного агента для систем CMV-X

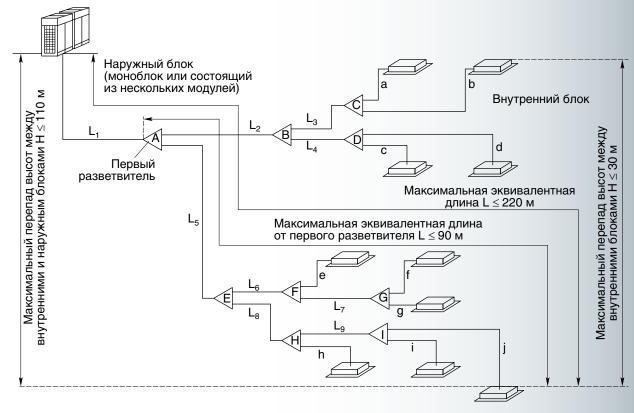
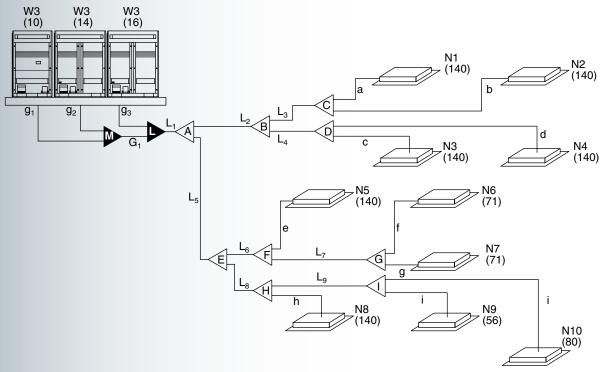



Рис. 1. Система трубопроводов мультизональной системы кондиционирования CMV

Таблица 1 Ограничения по длинам трасс и перепадам высот для системы CMV-X

	Суммарная физическая длина трубопроводов		< 1000 м	$L_1 + L_2 + L_3 + + L_8 + L_9 + a + b + c + + i + j$
	Максимальная длина трубопровода от на-	Физическая длина	≤ 190 м	
Длина ружного до дальнего внутреннего блока		Эквивалентная длина	≤ 220 M	L ₁ + L ₅ + L ₈ + L ₉ + j
	Эквивалентная длина трубопровода от первого разветвителя до дальнего внутреннего блока		≤ 90 м	L ₅ + L ₈ + L ₉ + j
	Максимальный перепад	Наружный блок выше	≤ 90 м	
Пере- пад высот	высот между наружным и внутренними блоками	Наружный блок ниже	≤ 110 M	_
Максимальный перепад внутренними блоками		высот между	≤ 30 м	

ПримечаниеПроизводительность внутренних блоков указана в индексах (10 индексов =1 кВт)

Рис. 2. Система трубопроводов мультизональной системы кондиционирования CMV с модульным наружным блоком

Таблица 2 Обозначения трубопроводов на Рис. 2

Наименование	Описание	Обозначение
Соединительные трубопроводы наружных блоков	Трубы между наружным блоком и рефнетом-соединителем для наружных блоков	g ₁ , g ₂ , g ₃
	Трубы между рефнетами-соединителями наружных блоков	G ₁
Рефнет-соединитель наружных блоков	Комплект рефнетов-соединителей для объединения наружных блоков в холодильную станцию	L, M
Магистральный трубопровод	Труба между наружным блоком (последним рефнетом-соединителем наружных блоков) и первым разветвителем	L ₁
Внутренний соединительный трубопровод	Участки трубы между разветвителями	L ₂ ~ L ₉
Внутренний разветвитель	Разветвитель для соединительных трубопроводов внутренних блоков	A ~ I
Трубопровод между развет- вителем и внутренним блоком	Трубопроводы от разветвителей до внутренних блоков	a ~ j

Таблица 3 Трубопровод между разветвителем и внутренним блоком

А: производительность	Если длина труб	бопровода < 90 м	Если длина трубопровода > 90 м		
внутренних блоков, кВт	Жидкость, мм	Газ, мм	Жидкость, мм	Газ, мм	
A < 2,8	Ø6,35	Ø9,53	Ø9,53	Ø12,7	
2,8 < A < 5,6	Ø6,35	Ø12,7	Ø9,53	Ø15,9	
5,6 < A < 16,0	Ø9,53	Ø15,9	Ø12,7	Ø19,1	

Таблица 4 Подбор внутренних разветвителей и трубопроводов между разветвителями (см. Рис. 2, элементы от A–I и L_2 – L_9)

*	•	. 0,		
W: суммарная производительность внутренних блоков, расположенных	Диаметр трубо подбираемым	Диаметр трубопровода перед подбираемым разветвителем		
после подбираемого разветвителя, кВт	Жидкость, мм	Газ, мм		
W < 6,5	∅9,53	Ø12,7	SP-FQG-N01A	
6,5 < W < 17,0	∅9,53	Ø15,9	SP-FQG-N02A	
17,0 < W < 28,0	Ø12,7	Ø22,2	SP-FQG-N03A	
28,0 < W < 33,5	Ø12,7	Ø25,4	CD FOC NOAA	
33,5 < W < 40,0	Ø12,7	Ø28,6	SP-FQG-N04A	
40,0 < W < 53,2	Ø15,9	Ø28,6	SP-FQG-N05A	
53,2 < W < 68,0	Ø15,9	Ø31,8		
68,0 < W < 73,0	Ø15,9	Ø34,9	SP-FQG-N06A	
73,0 < W < 96,0	Ø19,1	Ø34,9		
96,0 < W < 135,0	Ø19,1	Ø41,3	SP-FQG-N07A	
W > 135,0	Ø22,2	Ø44,5	SP-FQG-N08A	

Таблица 5 Выбор диаметра магистрального трубопровода (см. Рис. 2, элемент L₁)

Производитель- ность наружного блока (суммарная	длина труб	Если суммарная эквивалентная пина трубопроводов от наружного эка до дальнего внутреннего < 90 м			Если суммарная эквивалентная длина трубопроводов от наружного блока до дальнего внутреннего > 90 м		
производительность модулей наружного блока)	Жидкость, мм	Газ, мм	Первый разветвитель внутренних трубопроводов	Жидкость, мм	Газ, мм	Первый разветвитель внутренних трубопроводов	
8 HP	Ø12,7	Ø22,2	SP-FQG-N03A	Ø12,7	Ø25.4	CD FOC NOAA	
10 HP	Ø12,7	Ø25,4	SP-FQG-N04A	Ø12,7	Ø25.4	SP-FQG-N04A	
12 HP	Ø12,7	Ø28,6	SP-FQG-NU4A	Ø15,9	Ø28,6	SP-FQG-N05A	
14 HP / 16 HP	Ø15,9	Ø28,6	SP-FQG-N05A	Ø15,9	Ø31,8		
От 18 НР до 22 НР	Ø15,9	Ø31,8		Ø19,1	Ø31,8	SP-FQG-N06A	
24 HP	Ø15,9	Ø34,9	SP-FQG-N06A	Ø19,1	Ø34,9		
От 26 НР до 32 НР	Ø19,1	Ø34,9		Ø22,2	Ø38,1	CD FOC NOOA	
От 34 НР до 48 НР	Ø19,1	Ø41,3	SP-FQG-N07A	Ø22,2	Ø41,3	SP-FQG-N09A	
От 50НР до 64НР	Ø22,2	Ø44,5	SP-FQG-N08A	Ø25,4	Ø44,5	SP-FQG-N10A	
От 66НР до 72НР	Ø25,4	Ø44,5	SP-FQG-N10A	Ø25,4	Ø54,0	SP-FQG-N11A	

Примечание

Если суммарная производительность внутренних блоков больше суммарной производительности наружных блоков, выбор диаметров магистрального трубопровода и первого разветвителя производить по таблице 4.

Таблица 6 Диаметры трубопроводов между наружным блоком и рефнетом-соединителем для наружных блоков (см. Рис. 3 — элементы L, M и g₁, g₂, g₃, G₁)

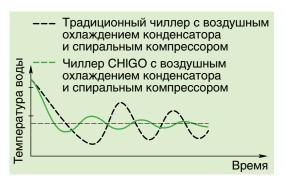
Коли- чество наруж-	Схема (пример)	Произво- дительность наружных	дов на	динительных аружных блок жидкость / газ	OB, MM	единитель для трубо-	
ных блоков		блоков	91, 92, 93, 94	G ₁	G ₂	проводов наружных блоков	
		8 HP/10 HP	Ø12,7/Ø25,4				
2	g_2 g_1	12 HP	Ø15,9/Ø25,6	_	_	L: SP-FQG-W2B	
		14 HP/ 16 HP/18HP	Ø15,9/Ø31,8				
		8 HP/10 HP	Ø12,7/Ø25,4				
3	g ₃ g ₂ g ₁ G ₁		12 HP	Ø15,9/Ø28,6	Ø19,1/Ø38,1	_	L + M: SP-FQG-W3B
		14 HP/ 16 HP/18HP	Ø15,9/Ø31,8				
		8 HP/10 HP	Ø12,7/Ø25,4				
4	4 g ₄ g ₃ g ₂ g ₁ M L	12 HP	Ø15,9/Ø28,6	Ø19,1/Ø38,1	Ø22,0/Ø41,3	L + M + N: SP-FQG-W4B	
	G_1 G_2	14 HP/ 16 HP/18HP	Ø15,9/Ø31,8				

Примечание

Использовать только разветвители Chigo.

Используются высоконадежные компрессоры Copeland.

- Менее чувствителен к попаданию жидкого хладагента.
 - У данной модели компрессора возможно радиальное расхождение спиралей при попадании в рабочую область жидкого хладагента — это позволяет защитить компрессор от гидроудара.
- Более высокая энергоэффективность.
- Во время работы компрессора постоянно поддерживается оптимальное значение осевых сил, действующих на спирали, позволяя добиваться высокой энергоэффективности во всем диапазоне нагрузок оборудования.
- Непревзойденная надежность.
- Легкость монтажа и простота обслуживания благодаря компактным размерам, малому весу и удобной конструкции.
- Оптимизированно под применение озонобезопасного холодильного агента R410A.
- Отсутствие клапанов на всасывании и нагнетании позволило снизить уровень шума и повысить надежность.


Электронно-расширительный вентиль (Saginomiya, Япония) — 500 ступеней регулирования.

• Преимущества по сравнению с терморасширительными вентилями (TPB): благодаря меньшей инерционности, большему диапазону регулирования и более высокой точности управления расходом хладагента можно более точно управлять температурой воды на выходе из испарителя, таким образом,

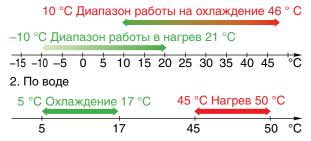
система может подстраиваться под переменные условия работы.

Оптимизированная конструкция и компактные размеры, позволили собирать мощные холодильные станции. Точное управление температурой воды позволяет поддерживать стабильную температуру воздуха в помещении. Это возможно благодаря тому, что производительность компрессора всегда соответствует реальным потребностям.

Интеллектуальная программа разморозки, которая запускается только тогда, когда это необходимо.

Программа разморозки активируется, опираясь на следующие параметры:

- температура окружающей среды,
- эффективность теплообмена и изменение производительности вследствие обмерзания (в то время как периоды между разморозками и длительность программ традиционных чиллеров фиксированы, что оказывает влияние на колебания температуры и уровень комфорта в целом).


Интеллектуальная программа размораживания запускается только тогда, когда это необходимо. Меньшие колебания температуры, выше уровень комфорта.

Озонобезопасный хладагент R410A (HFC).

Широкий температурный диапазон ра- боты.

1. По воздуху

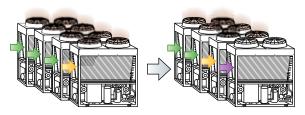
Модульная конструкция — удобство транспортировки и хранения.

Гибкость проектирования и монтажа. Максимально в холодильную станцию могут быть объединены 16 модулей, а ее мощность может достигать 2080 кВт.

Максимум 16 блоков по 130 кВт

Программа равномерной выработки ресурса.

Момент времени N


Главный модуль 2

Главный модуль 3

Оптимизация формы лопастей и конструкции канала вентилятора привели к увеличению расхода и снижению уровня шума.

Если главный модуль выйдет из строя, то все подчиненные модули будут остановлены - вручную можно будет назначить любой из подчиненных модулей главным. Если выйдет из строя подчиненный модуль, то все остальные продолжат работу.



Большое количество установленных защитных функций гарантирует высокую надежность системы.

Nº	Тип защиты
1	Защита компрессора по высокому давлению
2	Защита компрессора по низкому давлению
3	Защита от перегрева компрессора
4	Защита компрессора по току
5	Защита двигателя вентилятора по току и от перегрева
6	Защита от неправильной последовательности фаз
7	Реле протока

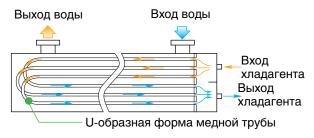
Использование большого количества защитных устройств гарантирует безопасность и надежность системы.

Защита компрессора по току

Реле низкого давления

Защита от перекоса фаз

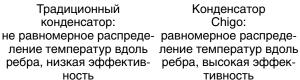
Решетка вентилятора выполнена из специального пластика, который не меняет своих свойств в течение длительного периода времени, что обеспечивает долгий срок службы решетки. Элементы корпуса из оцинкованной стали с эпоксидным покрытием — двойная гарантия на устойчивость к коррозии.



Высокоэффективный кожухотрубный испаритель.

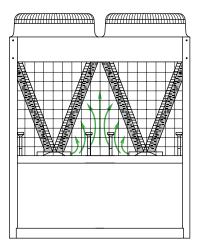
Коэффициент загрязнения —

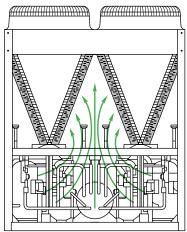
0.086 M²·°C/κBτ.


В теплообменнике используются медные трубы с высоким коэффициентом теплопроводности.

Высокоэффективный конденсатор.

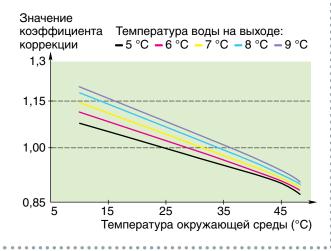
Конструкция оптимизирована образом, чтобы распределение температур поверхности верхней и нижней частей теплообменника было равномерным. Это позволило увеличить эффективность теплообменника в целом при работе системы на охлаждение, а так же ускорить процесс разморозки зимой при работе в нагрев.

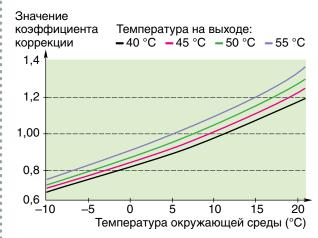



Конденсатор Chiao: тивность

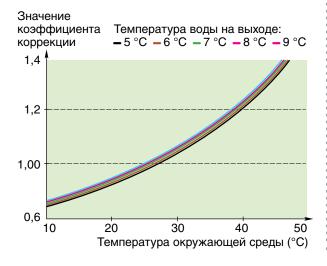
Открытая конструкция позволила увеличить площадь воздухозаборных окон и за счет этого увеличить эффективность теплопередачи на 8%.

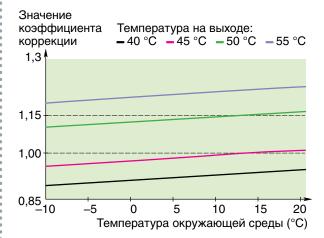
Кроме того, такая конструкция удобна для обслуживания.


Традиционная, закрытая конструкция

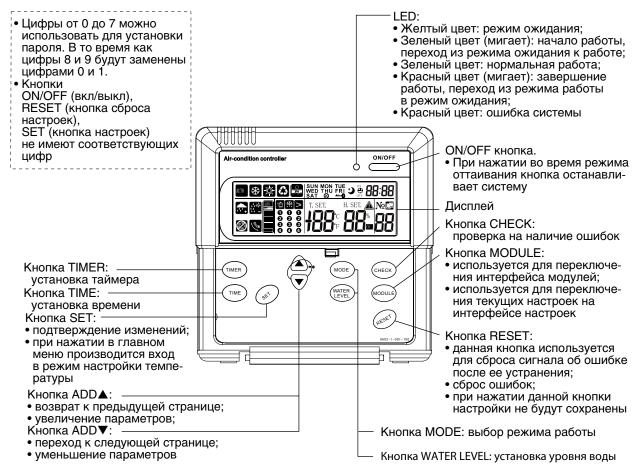

Открытый дизайн CHIGO

Зависимости изменения основных параметров


Кривые коэффициентов коррекции холодопроизводительности


Кривые коэффициентов коррекции теплопроизводительности

Кривые коэффициентов коррекции потребляемой мощности при работе на охлаждение



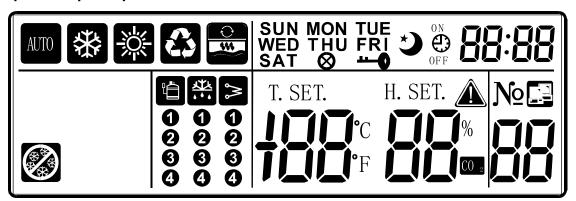
Кривые коэффициентов коррекции потребляемой мощности при работе на нагрев

Кнопки

Продолжительное нажатие клавиш и основные комбинации (нажатие двух кнопок одновременно)

♠ + ▼ — блокировка/разблокировка всех клавиш.

+ — отмена режима предварительного прогрева.


Нажатие и удержание в течение 3 секунд кнопки (MER) — активация функции синхронизации.

+ (СООЦЕ) — запуск принудительной разморозки модуля.

Нажатие и удержание в течение 3 секунд кнопки — вход в меню предпусковых настроек.

Нажатие и удержание в течение 3 секунд кнопки — вход в меню для настройки параметров мониторинга системы

Экран контроллера

1. Режим работы

Авто

Холод

Нагрев

Вентиляция

Рекуперация тепла

ГВС

2. Состояние системы

Защита от заморозки

Авария

Номер модуля чиллера

3. Рабочее состояние отдельных узлов

Состояние компрессора

Режим сна

Синхронизация

Отображение данной пиктограммы означает, что активирован режим разморозки системы. Номер

Отображение данной пиктограммы означает, что активирован режим разморозки соответствующего холодильного контура.

Мигание данной пиктограммы означает, что получена команда на принудительное размораживание.

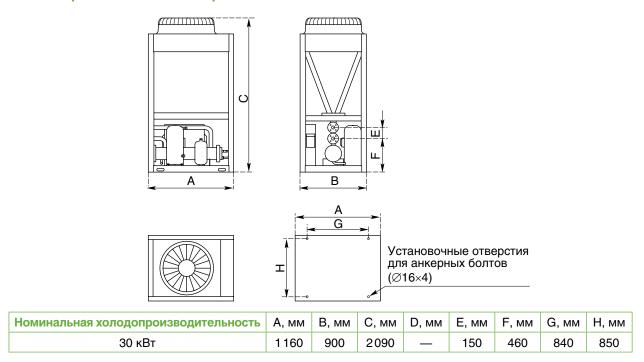
Отображение данной пиктограммы означает, что включен электрический нагрев. Мигание данной пиктограммы означает, что запущен предварительный нагрев.

4. Состояние кнопок

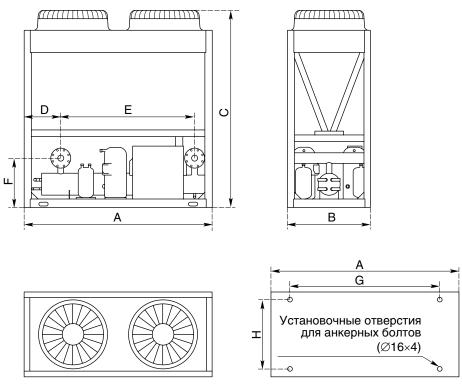
Кнопки заблокированы

Нажата неверная кнопка

Чиллеры (спецификация)

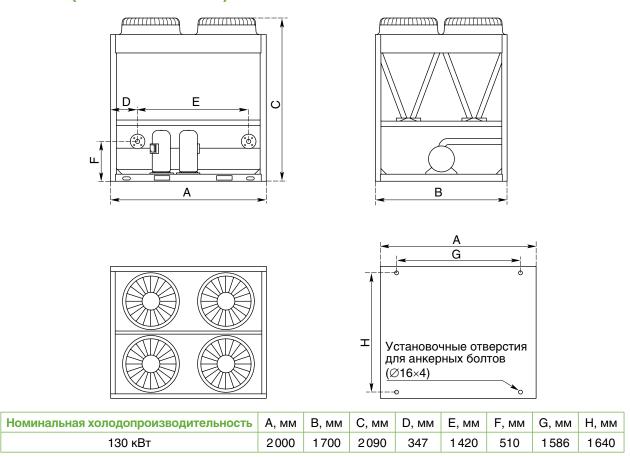

			01.0 500104/704	01.0 F051111/7704	01.0 54001111/704
	Модель	I	CLS-F30HW/ZR1	CLS-F65HW/ZR1	CLS-F130HW/ZR1
Питание	T	В/ф/Гц	380~415/3/50	380~415/3/50	380~415/3/50
Производитель-	Охлаждение	кВт	30	65	130
ПОСТВ	Нагрев	кВт	35	70	140
Потребляемая	Охлаждение	кВт	11	22	44
мощность	Нагрев	кВт	10,5	21	42
	Максимальное значение	кВт	15	26	52
Рабочий ток	Охлаждение	Α	19	38	78
	Нагрев	Α	18	37	76
	Максимальное значение	A	29	51	102
Хладагент	Заправка	КГ	6,5	6,5×2	6,5×4
	Регулирование ра	асхода	ЭРВ + Капиляр	ЭРВ + Капиляр	ЭРВ + Капиляр
	Тип		R410A	R410A	R410A
Компрессор	Производитель		Copeland	Copeland	Copeland
	Type		Scroll	Scroll	Scroll
	Количество	шт.	1	2	4
Вентилятор	Количество	шт.	1	2	4
	Расход воздуха	м ³ /ч	12000	24000	48 000
Испаритель	Тип		Кожухотрубный	Кожухотрубный	Кожухотрубный
(сторона воды)	Потери давле- ния	кПа	30	30	40
	Диаметр па- трубка вход/ выход	ММ	DN40	DN100	DN65
	Расход воды	м ³ /ч	5,16	11,18	22,36
	Максимальное. рабочее давле- ние	рабочее давле- МПа		1,1	1,1
	Тип соединения		Фланцевое	Фланцевое	Фланцевое
Размеры	Оборудование	ММ	1160×2090×900	2000×2090×900	2000×2090×1700
(Ш×В×Г)	Упаковка	ММ	1240×2250×950	2080×2250×950	2080×2250×1740
Bec	Нетто	КГ	320	570	1 100
Брутто		КГ	330	600	1 120
Уровень шума		дБ(А)	62	65	68
Температура	Охлаждение	°C	+7~+25	+7~+25	+7~+25
воды	Нагрев	°C	+30~+55	+30~+55	+30~+55
Температура	Охлаждение	°C	+10~+48	+10~+48	+10~+48
воздуха	Нагрев	°C	−10~+21	-10~+21	-10~+21

Данные приведены при следующих условиях.


- 1. Охлаждение: вода вход/выход: 12 °C/7 °C, температура наружного воздуха 35 °C по сухому термометру.
- 2. Нагрев: вода вход/выход: 40 °C/45 °C, температура наружного воздуха 7 °C по сухому термометру, 6 °C по влажному термометру.
- 3. Коэффициент загрязнения по воду: 0,086 м². °С/кВт.

Габаритные и присоединительные размеры

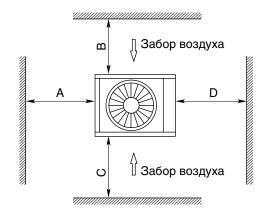
30 кВт (CLS-F30HW/ZR1)

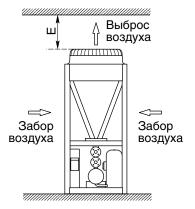


65 кВт (CLS-F65HW/ZR1)

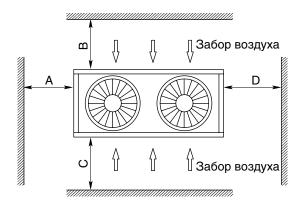
Номинальная холодопроизводительность	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм	Н, мм
65 кВт	2000	900	2090	386	1 420	522	1586	850

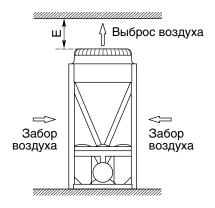
130 кВт (CLS-F130HW/ZR1)

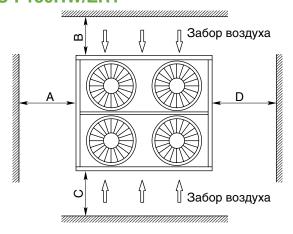

Примечание. После установки пружинного амортизатора общая высота оборудования уведичивается примерно на 135 мм.

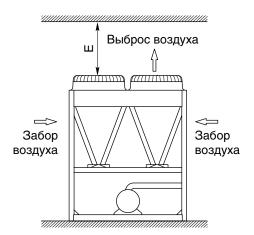

Пространство для установки

Основные требования к месту монтажа

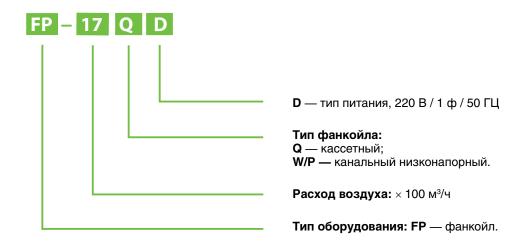

- 1. Для обеспечения достаточной циркуляции воздуха через конденсатор при монтаже оборудования необходимо учитывать влияние нисходящих потоков воздуха, которые могут возникать в местах застройки высотных зданий.
- 2. В случае монтажа оборудования в местах, где оно подвержено влиянию сильного ветра, например, на открытой крыше, необходимо установить специальные ограждающие конструкции либо специальные жалюзи. При установке ограждающих конструкций их высота не должна превышать высоту чиллера; если устанавливаются жалюзи, их сопротивление
- должно быть ниже статического давления вентилятора. Пространство между оборудованием и забором, или жалюзи, должно также отвечать требованиям минимального установочного пространства оборудования.
- 3. Если оборудование будет использоваться в зимний период, а место установки может быть занесено снегом, в этом случае устройство должно быть расположено выше высоты снежного покрова, чтобы обеспечить беспрепятственный проток воздуха через конденсатор. Оборудование не следует устанавливать в местах с высоким уровнем шума и вибрации.


CLS-F30HW/ZR1




CLS-F65HW/ZR1

CLS-F130HW/ZR1


Рекомендованные расстояния до препятствий

Рекомендованные расстояния						
А, мм В, мм С, мм D, мм Е, мм						
≥1500	≥2000	≥2000	≥1500	≥8000		

Маркировка фанкойлов Chigo

Кассетные четырехпоточные фанкойлы FP-(10-17)QD FP-(5-8)QD 1 000-1 700 м³/ч

Низкий уровень шума.

Жалюзи внутреннего блока спрофилированы таким образом, чтобы избежать появления дополнительных шумов.

Оптимизированная конструкция позволила увеличить объемный расход воздуха и повысить производительность.

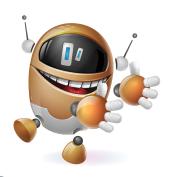
Использование крыльчатки вентилятора тщательно спроектированной формы позволило:

- снизить сопротивление по воздуху;
- получить более равномерный воздушный поток на выходе;
- добиться равномерного распределения скоростей воздуха по поверхности теплообменника.

Опциональная установка электрического нагревателя.

Выбор пультов управления позволяет удовлетворить требования любого заказчика.

Простота монтажа и обслуживания фанкойлов.


- Малая высота доводчиков позволяет устанавливать их в помещениях с небольшой высотой подпотолочного пространства.
- Благодаря компактной конструкции и малому весу фанкойла оборудование может монтироваться без специальных механизмов.

Напор встроенного дренажного насоса 1200 мм вод. ст.

Кассетные четырехпоточные фанкойлы (compact 600x600)

	Модель		FP-5QD	FP-6QD	FP-8QD			
Электропит	Электропитание В/ф/Гц		220~240/1/50	220~240/1/50	220~240/1/50			
Расход	Hi/Med/Lo	ф³/мин	300/255/180	350/298/210	470/400/282			
воздуха	Hi/Med/Lo	м ³ /ч	500/434/306	600/506/357	800/679/479			
Охлажде- ние	Hi/Med/Lo	кВт	2,8/2,4/1,8	3,5/3,0/2,3	4,5/3,9/2,9			
Нагрев	Hi/Med/Lo	кВт	4,2/3,7/2,7	5,3/4,6/3,4	6,8/5,9/4,4			
Уровень зву ния (на выс	укового давле- окой скорости)	дБ(А)	40	44	44			
Расход вод	Ы	м³/ч	0,48	0,60	0,78			
Сопротивле менника по	ение теплооб- воде	кПа	25	28	30			
Теплооб-	Количество ряд	ЮВ	2	2	2			
менник Тип			Медные трубки и алюминиевые ребра					
Двигатель вентиля- тора	Количество	шт.	1	1	1			
	Потребляемая мощность	Вт	43	64	65			
Размеры	Блок	ММ	580×275×580	580×275×580	580×275×580			
(Д×В×Г)	Упаковка	ММ	745×350×675	745×350×675	745×350×675			
Bec	Нетто/брутто	КГ	22/24	22/24	22/24			
Размеры	Блок	ММ	650×30×650	650×30×650	650×30×650			
панели (Д×В×Г)	Упаковка	ММ	710×120×710	710×120×710	710×120×710			
Bec	Нетто/брутто	КГ	2,7/4,0	2,7/4,0	2,7/4,0			
Трубопро- воды	Диаметр вход- ной трубы	ММ	Ø20	Ø20	Ø 20			
	Диаметр вы- ходной трубы	ММ	Ø20	Ø20	Ø 20			
	Диаметр дре- нажной трубы	ММ	Ø 25	Ø 2 5	Ø 2 5			
Контроллер			Проводной ПДУ (опция), ИК ПДУ (стандартно)					

Кассетные четырехпоточные фанкойлы

	Модель		FP-10QD	FP-13QD	FP-15QD	FP-17QD		
Электропит	ание	В/ф/Гц	220~240/1/50	220~240/1/50	220~240/1/50	220~240/1/50		
Расход	Hi/Med/Lo	ф³/мин	600/510/360	760/646/456	880/748/528	1 000/850/600		
воздуха	Hi/Med/Lo	м ³ /ч	1 000/867/612	1 300/1 098/775	1 500/1 272/898	1700/1445/1020		
Охлажде- ние	Hi/Med/Lo	кВт	5,3/4,6/3,4	7,2/6,3/4,7	8,5/7,4/5,5	10,0/8,7/6,5		
Нагрев	Hi/Med/Lo	кВт	8,0/7,0/5,2	10,8/9,4/7,0	12,8/11,1/8,3	15,0/13,1/9,8		
	/кового давле- окой скорости)	дБ(А)	48	48	52	53		
Расход вод	ol	м ³ /ч	1,10	1,24	1,46	1,55		
Сопротивле менника по	ение теплооб- воде	кПа	36	36	38	40		
Теплооб-	Количество ряд	ОВ	2	2	2	2		
менник	Тип		Медные трубки и алюминиевые ребра					
Двигатель	Количество	шт.	1	1	1	1		
вентиля- тора	Потребляемая мощность	Вт	140	150	160	180		
Размеры	Блок	ММ	840×230×840	840×230×840	840×285×840	840×285×840		
(Д×В×Г)	Упаковка	ММ	920×265×920	920×265×920	920×310×920	920×310×920		
Bec	Нетто/брутто	КГ	23/28	23/28	26/31,5	28/31,5		
Размеры	Блок	ММ	950×50×950	950×50×950	950×50×950	950×50×950		
панели (Д×В×Г)	Упаковка	ММ	1 030×105×1 030	1 030×105×1 030	1 030×105×1 030	1 030×105×1 030		
Bec	Нетто/брутто	КГ	5,4/8,0	5,4/8,0	5,4/8,0	5,4/8,0		
Трубопро- воды	Диаметр вход- ной трубы	ММ	Ø20	Ø20	Ø 20	Ø 20		
	Диаметр вы- ходной трубы	ММ	Ø20	Ø20	Ø20	Ø20		
	Диаметр дре- нажной трубы	ММ	Ø 2 5	Ø 2 5	Ø 2 5	Ø 2 5		
Контроллер	Контроллер			Проводной ПДУ (опция), ИК ПДУ (стандартно)				

Данные приведены при следующих условиях.

Режим охлаждения: температура воздуха в помещении 27 °C по сухому термометру, относительная влажность 50% (19 °C по влажному термометру), температура воды 7/12 °C.

Режим нагрева: температура воздуха в помещении 21 °C по сухому термометру, температура воды 60/55 °C.

Фанкойлы канального типа

Серия Рго

Высокая производительность охлаждения/обогрева и высокая энергоэффективность.

Корпус фанкойла выполнен из оцинкованной стали.

Быстрое достижение заданных параметров воздуха в помещении.

Трехскоростной низкошумный вентилятор с прямым приводом.

Дренажный поддон выполнен из оцинкованной стали. Хорошая теплоизоляция поддона гарантирует отсутствие образования конденсата на его поверхности.

Установка фильтра опционально.

Фанкойлы канального типа (Серия Pro)

	Модель		FP-34WA-Y3	FP-51WA-Y3	FP-68WA-Y3
Электропитание			220~240/1/50	220~240/1/50	220~240/1/50
Расход воздуха	Hi/Med/Lo	ф³/мин	200/168/124	300/247/188	400/341/247
	Hi/Med/Lo	м³/ч	340/285/210	510/420/320	680/580/420
Охлаждение	Hi/Med/Lo	кВт	2,2/1,7/1,1	3,3/2,5/1,6	4,2/3,3/2,0
Нагрев	Hi/Med/Lo	кВт	3,5/2,7/2,2	5,3/4,1/3,4	6,8/5,2/4,4
Внешний статический н	апор	Па	12	12	12
Уровень звукового давл	дБ(А)	36	37	40	
Расход воды			0,37	0,56	0,72
Сопротивление теплообменника по воде			14	20	22
Теплообменник	Количество рядов	3	3	3	
	Тип	Медные трубки и алюминиевые ребра			
Двигатель вентилятора	Количество	шт.	1	1	1
	Потребляемая мощность	Вт	30	39	60
Размеры (Д×В×Г)	Блок	ММ	770×240×472	825×240×472	927×240×472
	Упаковка	ММ	790×265×500	865×265×500	940×265×500
Bec	Нетто/брутто	КГ	13/15	15/17	17/20
Трубопроводы	Диаметр входной трубы	ММ	Ø20	Ø20	Ø20
	Диаметр выходной трубы	ММ	Ø20	Ø20	Ø20
	Диаметр дренажной трубы	ММ	Ø 2 5	Ø 2 5	Ø 2 5
Термостат / контроллер			В поставку не входит		

Фанкойлы канального типа (Серия Рго) (продолжение)

	Модель		FP-85WA- Y3	FP-102WA- Y3-G30	
Электропитание	В/ф/Гц	220~240/1/50	220~240/1/50		
Расход воздуха	Hi/Med/Lo	ф³/мин	500/412/306	600/494/365	
	Hi/Med/Lo	м ³ /ч	850/700/520	1 020/840/620	
Охлаждение	Hi/Med/Lo	кВт	4,6/3,6/2/2	5,8/4,5/2,8	
Нагрев	Hi/Med/Lo	кВт	7,9/6,1/5,1	10,0/7,7/6,4	
Внешний статический н	апор	Па	12	30	
Уровень звукового давл	дБ(А)	43	47		
Расход воды	М ³ /Ч	0,83	1,00		
Сопротивление теплооб	менника по воде	кПа	24	34	
Теплообменник	Количество рядов		3	3	
	Тип		Медные трубки и алюминиевые ребра		
Двигатель вентилятора	Количество	шт.	1	1	
	Потребляемая мощность	Вт	76	106	
Размеры (Д×В×Г)	Блок	ММ	927×240×490	1 140×240×472	
	Упаковка	ММ	940×265×500	1155×265×500	
Bec	Нетто/брутто	КГ	17/20	20/23	
Трубопроводы	Диаметр входной трубы	ММ	Ø 20	Ø20	
	Диаметр выходной трубы	ММ	Ø20	Ø20	
	Диаметр дренажной трубы	ММ	Ø 2 5	Ø25	
Термостат / контроллер		В поставку	/ не входит		

Фанкойлы канального типа (Серия Рго) (окончание)

	Модель		FP-136WA- Y3-G30	FP-170WA- Y3-G30	
Электропитание	В/ф/Гц	220~240/1/50	220~240/1/50		
Расход воздуха	Hi/Med/Lo	ф³/мин	800/676/494	1 000/824/588	
	Hi/Med/Lo	м³/ч	1 360/1 150/840	1 700/1 400/1 000	
Охлаждение	Hi/Med/Lo	кВт	7,9/6,2/3,8	9,1/7,1/4,4	
Нагрев	Hi/Med/Lo	кВт	13,6/10,5/8,7	16,0/12,3/10,3	
Внешний статический на	Па	30	30		
Уровень звукового давления (на высокой скорости)			47	50	
Расход воды	м³/ч	1,36	1,56		
Сопротивление теплооб	кПа	34	40		
Теплообменник	Количество рядов		3	3	
	Тип		Медные трубки и алюминиевые ребра		
Двигатель вентилятора	Количество	шт.	2	2	
	Потребляемая мощность	Вт	150	172	
Размеры (Д×В×Г)	Блок	ММ	1440×240×472	1546×240×472	
	Упаковка	ММ	1 475×265×500	1565×265×500	
Bec	Нетто/брутто	КГ	27/31	32/35	
Трубопроводы	Диаметр входной трубы	ММ	Ø 20	Ø20	
	Диаметр выходной трубы	ММ	Ø 20	Ø20	
	Диаметр дренажной трубы	ММ	Ø 2 5	Ø 25	
Термостат / контроллер	Термостат / контроллер			у не входит	

Примечание.

Данные в таблицах «Фанкойлы канального типа (Серия Pro)» приведены при следующих условиях.

Режим охлаждения: температура воздуха в помещении 27 °C по сухому термометру, относительная влажность 50% (19 °C по влажному термометру), температура воды 7/12 °C.

Режим нагрева: температура воздуха в помещении 21 °C по сухому термометру, температура воды 60/55 °C.

Аксессуары

Беспроводной ПДУ (стандартно для кассетных внутренних блоков)

- Радиус действия 8 м.
- Пять режимов работы: авто, охлаждение, осушка, нагрев, вентиляция.
- Установка таймера 24 часа.
- Диапазон задания температур 16–32 °C.
- Три скорости установки вентилятора (выс./ср./низ.).
- Активация функции комфортного сна.

Проводной термостат (опция)

- Огнестойкость ABS/PC.
- Водоотталкивающее покрытие.
- Диапазон установки температур 10–30 °C.

Режим управления вентилятором

 Температурозависимое управленние: фанкойл включается и отключается в зависимости от температуры воздуха в помещении.

Двухходовой и трехходовой клапаны (опция) — в типовую поставку не входит

- Уникальная закрытая конструкция гарантирует надежную работу привода.
- Малое энергопотребление и высокий ресурс.
- Компактные размеры.
- Разъемная конструкция: привод можно отсоединить от клапана.
- Рабочее давление до 1,6 МПа.
- Ручное управление. Удобно при проведении пусконаладки системы.

Номенклатура климатической техники

Бытовые системы кондиционирования

Сплит-системы (CS)

Серия 114 (on/off)

Серия 114 (DC-инвертор)

Серия 124 (on/off)

21/25/32/51/61

Серия 147 (on/off)

Серия 147 (DC-инвертор)

Мультисплит-система

Полупромышленные системы кондиционирования

Колонные (CFI)

Четырехпоточные кассетные (Compact type) (CCB)

Низконапорные

18/24

канальные (СТА)

Четырехпоточные

кассетные (ССА)

18/24/36/48/60

Средненапорные канальные (СТВ)

18/24/36/48/60

Напольноподпотолочные (CUA)

18/24/36/48/60

Высоконапорные канальные (СТН)

Четырехпоточные кассетные (ССА) (DC-инвертор)

18/24/36

Напольноподпотолочные (CUA) (DC-инвертор)

Средненапорные канальные (СТВ) (DC-инвертор)

Универсальные наружные блоки (COU)

Настенные (CMV-V**G)

22/28/36/45/61/71

22/28/32/36/45/56/71

Четырехпоточные кассетные

22/28/36/45 Средненапорные

канальные (CMV-V**ТВ/НR1-В)

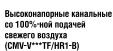
(Compact type) (CMV-V**Q4)

Высоконапорные канальные (CMV-V**TH/HR1-B)

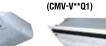
71/80/90/100/120/150/

Четырехпоточные кассетные (CMV-V**Q)

28/36/45/56/71/80/90/100/ 112/125/140/160



Мультизональные системы VRF Однопоточные Напольно-


подпотолочные

45/56/71/80/90/112/140/160

140/224/280

кассетные

22/28/36

Двухпоточные кассетные (CMV-V**02)

укороченные канальные (CMV-V**TA/HR1-C)

22/28/32/36/45/56/71

Низконапорные

CMV-II

CMV-X CMV-mini

с рекуперацией тепла

(QR-X**DS)

Вентиляционные установки

CMV-mini: до 8 внутренних блоков в единой системе холодопроизводительностью до 18 кВт.

CMV-II: до 64 внутренних блоков в единой системе холодопроизводительностью до 180 кВт. CMV-X: до 64 внутренних блоков в единой системе холодопроизводительностью до 200 кВт.

Промышленные системы кондиционирования

наружный блок (COT)

Универсальный

Напольный (CFAI)

Компрессорноконденсаторные

блоки (ККБ)

Крышный кондиционер (CRB)

Чиллеры (cls-f)

Модульные чиллеры холодопроизводительностью 30, 65, 130 кВт с возможностью объединения

Кассетные четырехпоточные (Compact 600×600) (FP-*QD)

четырехпоточные (FP-*QD)

Кассетные

Фанкойлы

Компактные и тихие фанкойлы холопроизводительностью от 2,2 до 10,8 кВт

8 (800) 775-42-13 E-mail: info@chigo.su